首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
利用哈密顿傅立叶格点法(FGH)求解含时薛定谔方程,采用劈裂算符方案传播波包,计算HCl分子从基态X1∑+的不同振动能级(v=0,v=1,v=2和v=3)上跃迁到激发态A1∏的吸收截面。从结果中发现从不同的振动能力激发获得的吸收谱是不同的,这些吸收截面都表现出相应的谐振行为,吸收截面的最小值的数目恰好与基态振动波函数的节点数是一致的,这种现象正好符合反射定律。  相似文献   

2.
运用CCSD(T)理论,采用aug-cc-pVTZ基组对PD2分子的基态结构进行了优化和频率计算.得到的平衡核间距RPD=0.142 36 nm,键角∠DPD=91.806 9°,离解能De(DP-D)=3.407 0 eV,对称伸缩振动频率v1(a1)=1 709.376 0 cm-1,弯曲振动频率v2(a1)=806.839 9 cm-1和反对称伸缩振动频率v3(b2)=1 718.941 1 cm-1.用多体项展式理论导出基态PD2分子的解析势能函数,该势能表面准确地再现了PD2分子的平衡结构特征.  相似文献   

3.
应用分立位置表象法(DPR)计算了双原子分子N2、Li2和CN在不同电子态之间发生振动跃迁的Franck-Condon因子,并用洛伦兹线型拟合了Li2分子低电子态振动跃迁的发射谱和吸收谱.结果表明,分立位置表象法是处理双原子分子振动问题的一种简单而有效的方法.DPR方法的计算程序可用于计算双原子分子的振动能级、波函数以及F-C因子.  相似文献   

4.
O(3P)+CH4→CH3+OH反应的半刚性振转靶计算   总被引:2,自引:1,他引:2  
运用半刚性振转靶(semirigid vibrating rotor target-SVRT)模型和含时波包法(TDWP method), 对O(3P)+CH4→CH3+OH反应体系进行了含时量子动力学计算, 给出了该体系对应于不同初始态的反应几率. 通过对j = 0时, v = 0, 1的反应几率的计算, 看出H-CH3的振动激发, 极大地提高了反应几率, 而反应阈能明显降低, 说明反应分子的振动能对分子的碰撞反应有重要贡献. 而对于v = 0时, j = 0, 1, 2, 3的反应几率的计算,得出转动量子数j的增大, 也会使反应几率有较大的提高, 但反应阈能基本不变. 此外, 通过对j = 5时, K = 0-2, n = 0和j = 5时K = 2, n = 0-2的反应几率的计算, 研究和分析了该反应的空间立体效应.  相似文献   

5.
应用群论及原子分子反应静力学方法推导SiO2分子的电子态及其离解极限,在B3P86/cc-PVTZ水平上,对SiO2分子基态进行优化计算,得出基态SiO2分子的单重态能量最低,其稳定构型为D∞h构型,平衡核间距Re=0.151 3 nm、能量为-440.559 5 a.u..同时计算出基态的简正振动频率:对称伸缩振动频率v(Π)=1 005.63 cm-1,弯曲振动频率v(Σg)=297.86 cm-1和反对称伸缩振动频率v(Σu)=1 458.09 cm-1.在此基础上,使用多体项展式理论方法,导出了基态SiO2分子的全空间解析势能函数,该势能函数准确再现了SiO2(D∞h)的平衡结构.  相似文献   

6.
用轨线法对C(3Pg)+SiO(X1Σ+,v=0、1,j=0)→SiC(X1Σ+)+O(3Pg)反应进行了计算,研究了两种状态下产物SiC的散射分布和微观反应机理.随初始相对碰撞平动能Et增加,产物SiC向前散射减弱,向后散射增强.对振动基态SiO(X1Σ+,v=0,j=0),Et≤4.6024×103kJ·mol-1,产物以向前散射为主;Et>4.6024×103kJ·mol-1,产物以向后散射为主.对振动激发态SiO(X1Σ+,v=1,j=0),Et≤4.1840×103kJ·mol-1,产物以向前散射为主;Et>4.1840×103kJ·mol-1,产物以向后散射为主.  相似文献   

7.
以类氦铝离子1s~2(~1S~e)和1snp(~1P~o)(n=2-4)原子态的能级计算为例,研究了波函数的边界条件对稠密等离子体中原子结构的影响。结果表明:当电子密度较低时,不同的边界条件所计算的能级是相等的;当电子密度较高时,不同边界条件所计算的能级差异较大;离子球外面的波函数应该逐渐衰减至零,而不应该总是等于零。  相似文献   

8.
基于含时波包理论,利用劈裂算符方法传播波包,计算IBr分子从初始态X^1∑^+(0^+)(v=0)振动能级上跃迁到激发态C^1 Ⅱ(1)的光孵截面,计算结果与实验结果符合的很好.为了研究不同波包传播方法对光解截面的影响,又利用Chebyshev传播波包方法,结果与劈裂算符方法传播波包得到的光解离截面基本重合,这说明在利用含时量子理论处理光解离问题时,Chebyshev方法和劈裂算符方法是基本等效的.  相似文献   

9.
WBM法在薄板弯曲振动分析中的应用   总被引:3,自引:0,他引:3  
研究了薄板结构在点力激励下的弯曲振动响应,基于间接Trefftz法.提出了解决薄板弯曲振动响应的波函数方法(WBM).方法原理是:将振动响应展开成全局波函数和非齐次方程特解的线性叠加,这些波函数精确满足方程的齐次部分,随后利用伽辽金法在边界上进行加权残值计算.得到波函数的常数系数.同有限元法相比,WBM法不再需要划分成很小的单元,有更高的计算效率和收敛速度.可以推广到中频段的计算.以一个周边简支矩形薄板为例进行验证.结果表明方法准确且高效.  相似文献   

10.
运用半刚性振转靶(semirigid vibrating rotor target-SVRT)模型和含时波包法(TDWP method),对O(3^P) CH4→CH3 OH反应体系进行了含时量子动力学计算,给出了该体系对应于不同初始态的反应几率,通过对j=0时,v=0,1的反应几率的计算,看出H—CH3的振动激发,极大地提高了反应几率,而反应阈能明显降低,说明反应分子的振动能对分子的碰撞反应有重要贡献,而对于v=0时,j=0,1,2,3的反应几率的计算,得出转动量子数j的增大,也会使反应几率有较大的提高,但反应阈能基本不变。此外,通过对j=5时,K=0—2,n=0和j=5时K=2,n=0—2的反应几率的计算,研究和分析了该反应的空间立体效应。  相似文献   

11.
在Pu原子的相对论有效原子实势近似下,用密度泛函B3LYP方法计算得到PuH2分子基态(X7A1)的平衡结构为R(PuH)=0.2169 nm,∠HPuH=160.34°,离解能为3.0045 eV,谐振频率为293.4140,1209.2715和1262.2149 cm-1.用多体展式理论得到PuH2基态分子的分析势能函数,根据该分析势能函数,用准经典方法研究Pu(7Fg)+H2(X1∑+g,v=J=0)的分子反应动力学,结果表明Pu(7Fg)与H2(X1∑g+,0,0)碰撞是弹性碰撞.  相似文献   

12.
理论研究振动态H_2~+在抽运探测激光驱动下对谐波辐射强度的影响.结果表明,在低振动态下(例如:υ=0),谐波辐射强度随抽运探测激光场延迟时间的增大而减小.随着振动态升高(例如:υ=2),不同延迟时间下的谐波辐射强度差减小.当振动态继续升高时(例如:υ=4),较大延迟时间下的谐波辐射强度反而高于较小延迟时间下的谐波辐射强度.最后,通过研究谐波辐射的时频分析图给出了谐波辐射强度变化的原因.  相似文献   

13.
具体考察了H+2基态近似解析波函数φH+2=1/2(1+S)1/2φH(z,ra)+φH(z,rb))对振动能级的影响,得到了基于此波函数的波恩-奥本海默近似下的H+2势能曲线的解析表达式,并由此计算了振动能.结果发现,当仅考虑H+2的基态,z取1.23时,振动能级和平衡位置都与实验值很相符.当考虑较高的振动能级时,波函数中的z取1.13会更合理,因此时的振动能级和实际振动能级值符合得很好.  相似文献   

14.
利用Molpro程序包提供的多种方法及基组对BeH分子基态(X2∑+)进行优化计算,结果表明,当选用多参考组态相互作用(MRCI)方法和基组aug-cc-pVQZ进行优化计算时,得到的平衡核间距及离解能与实验值符合较好.在该方法下对BeH分子进行单点能扫描,将得到的分子势能代入分子核运动的Schr9dinger方程,求解该方程获得了BeH分子X2∑+态J=0时的12个振动态,对于每个振动态,分别计算了其振动能级G(v)、转动惯性常数Bv及离心畸变常数Dv,同时进一步导出的光谱常数也与实验值较为吻合.  相似文献   

15.
以纳秒Nd:YAG脉冲激光器的2倍频输出532nm激光作为激发源,采用双光子激发激光诱导色散荧光光谱方法对SO2分子第一激发带粒子的荧光辐射与碰撞弛豫相结合的复杂退激发过程进行了实验研究.结果表明,以215,337nm处荧光包络分别归属于C1B2,B1B1基振动能级到基电子态X1 A1不同振动能级的荧光跃迁,而425nm处荧光包络包既包含有a3B1基振动能级向基电子态X1 A1的荧光跃迁,同时还包含有C1B2基振动能级向A1 A2的荧光跃迁;由规则序列的实验数据可以计算出SO2分子相应电子态的对称振动和弯曲振动模式的基振动角频率及非谐性常数.所得结果对大气污染物SO2的探测及分子物理学研究具有重要意义.  相似文献   

16.
《科学通报(英文版)》1998,43(18):1536-1536
The relaxation of the highly vibrationally excited CO (v=1-8) by CO\-2 is studied by time_resolved Fourier transform infrared emission spectroscopy (TR FTIR). 193 nm laser photolysis of the mixture of CHBr\-3 with O\-2 generates the highly vibrationally excited CO(v) molecules. TR FTIR records the intense infrared emission of CO(v→v-1). The vibrational populations of each level of CO(v) have been determined by the method of spectral simulation. Based on the evolution of the time resolved populations and the differential method, 8 energy transfer rate constants of CO(v=1-8) to CO 2 molecules are obtained: (5.7±0.1), (5.9±0.1), (5.2±0.2), (3.4±0.2), (2.4±0.3), (2.2±0.4), (2.0±0.4) and (1.8±0.6) (10 -14 cm 3·molecule -1·s -1), respectively. A two_channel energy transfer model can explain the feature of the quenching of CO(v) by CO 2. For the lower vibrational states of CO, the vibrational energy transfers preferentially to the υ\-3 mode of CO 2. For the higher levels, the major quenching channel changes to the vibrational energy exchange between CO(v→v-1) and the υ\-1 mode of CO 2.  相似文献   

17.
Greaves SJ  Wrede E  Goldberg NT  Zhang J  Miller DJ  Zare RN 《Nature》2008,454(7200):88-91
Vibrationally inelastic scattering is a fundamental collision process that converts some of the kinetic energy of the colliding partners into vibrational excitation(,). The conventional wisdom is that collisions with high impact parameters (where the partners only 'graze' each other) are forward scattered and essentially elastic, whereas collisions with low impact parameters transfer a large amount of energy into vibrations and are mainly back scattered. Here we report experimental observations of exactly the opposite behaviour for the simplest and most studied of all neutral-neutral collisions: we find that the inelastic scattering process H + D(2)(v = 0, j = 0, 2) --> H + D(2)(v' = 3, j' = 0, 2, 4, 6, 8) leads dominantly to forward scattering (v and j respectively refer to the vibrational and rotational quantum numbers of the D(2) molecule). Quasi-classical trajectory calculations show that the vibrational excitation is caused by extension, not compression, of the D-D bond through interaction with the passing H atom. However, the H-D interaction never becomes strong enough for capture of the H atom before it departs with diminished kinetic energy; that is, the inelastic scattering process is essentially a frustrated reaction in which the collision typically excites the outward-going half of the H-D-D symmetric stretch before the H-D(2) complex dissociates. We suggest that this 'tug of war' between H and D(2) is a new mechanism for vibrational excitation that should play a role in all neutral-neutral collisions where strong attraction can develop between the collision partners.  相似文献   

18.
The complete experimental IR spectra and vibrational analysis of the title complex Co(mnt)(dmbpy) were reported in this paper. The results show that the complex molecule has a planar geometrybelonging to point group C2v and ground electronic state with spin quartet. A new method for analyzing vi-brational spectra of complicated molecule is established. The essential of this method is to point out mainfixed points and pivotal vibrational units in assignment for each fundamental band. Two new symbols q(heaving along the specified direction) and M (midpoint of a bond or unit) were defined for describing thevibrational modes accurately.  相似文献   

19.
建立含有屏蔽参数σ的铍离子Be~(2+)(z=4)和硼离子B~(3+)(z=5)的哈密顿方程.以有效核电荷数为z*=z-σ的类氢原子基态1s和激发态ns(n=2,3,…)组合的双电子波函数,作为铍离子Be~(2+)和硼离子B~(3+)的基态近似波函数.应用参数微扰法确定铍离子Be~(2+)的屏蔽参数σ=0.56350197和硼离子B~(3+)的屏蔽参数σ=0.525070444,应用参数微扰法计算铍离子Be~(2+)三级近似基态能量和硼离子B~(3+)四级近似基态能量的理论值与实验值的误差为ΔE≈10~(-4)~10~(-5)a.u..  相似文献   

20.
基态的HCN和HNC分子的势能面   总被引:1,自引:1,他引:0  
运用密度泛函理论(DFT)的B3LYP方法在6-311++G**水平上,对基态HCN和HNC分子的结构进行了优化计算,得到HCN分子的稳定结构为C∞v构型,电子态为X1∑+u,平衡核间距RH-C=0.1066 nm、RC-N=0.1149 nm,离解能De=18.88 eV; HNC分子的稳定结构为C∞v构型,电子态为X1∑+u,平衡核间距RH-N=0.09996?nm、RN-C=0.1169?nm,离解能De=18.256?eV,用多体项展式理论推导了基态HCN和HNC分子的解析势能函数,其等值势能图准确再现了基态HCN和HNC分子的结构特征及其势阱深度与位置.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号