首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
纳米Ta基阻挡层薄膜及其扩散体系电阻特性研究   总被引:1,自引:0,他引:1  
采用直流磁控溅射方法在p型(100)Si衬底上制备了3类Ta基纳米阻挡层薄膜及其对应的Cu/barrier/Si复合膜,并对薄膜样品进行了卤钨灯快速热退火(RTA).用四探针电阻测试仪(FPP),AFM,SEM-EDS,Alpha—step IQ台阶仪和XRD等分析测试方法对样品快速热退火前后的电阻特性和形貌结构进行了分析表征.实验结果表明,热处理过程中,凝聚、氧化和稳态效应同时出现,方块电阻的增大和下降趋势并存;而高温退火后Cu和Si发生互扩散形成的高阻相Cu3Si与更粗糙的表面形貌引起更强烈的电子散射导致了复合膜系方块电阻的急剧增加.  相似文献   

2.
用原子力显微镜(AFM)观测经不同温度退火的Fe基合金薄带(Fe73.5Cu1Nb3Si13.5B9)断口形貌, 结合XRD衍射晶体分析技术和综合他人已有研究结果, 分析了Nb和Cu在Fe基合金薄带退火过程中的作用机制. 提出了包裹晶颗、Nb空位团、Nb-B原子群等新概念, 并利用这些新概念描述了α-Fe(Si)纳米晶形成的机制, 从而建立了Fe基纳米晶合金由分隔相、包裹相和纳米晶相组成的三相互套结构模型.  相似文献   

3.
利用离子束辅助沉积方法(IBAD)在室温和400℃下制备出了单质的ZrB2和W薄膜以及不同调制周期和调制比的ZrB2/W纳米超晶格多层膜. 通过XRD, SEM, 表面轮廓仪及纳米力学测试系统研究了沉积温度和调制周期对纳米多层膜生长、织构、界面结构、机械性能的影响. 研究结果表明: 在室温条件下, 调制周期为13 nm时, 多层膜的硬度最高可达23.8 GPa, 而合成中提高沉积温度则有利于提高薄膜的机械性能. 在沉积温度约为400℃时合成的6.7 nm调制周期的ZrB2/W多层膜, 其硬度和弹性模量分别达到了32.1和399.1 GPa. 同时, 临界载荷也增大到42.8 mN, 且残余应力减小到约?0.7 GPa. 沉积温度的提高不仅使具有超晶格结构的ZrB2/W纳米多层膜界面发生原子扩散, 增强了沉积原子迁移率, 导致其真实的原子密度提高, 起到位错钉扎的作用, 同时晶粒尺度也被限制在纳米尺度, 这些均对提高薄膜的硬度起到作用.  相似文献   

4.
具有高温稳定性的ZrAlN薄膜的合成   总被引:2,自引:0,他引:2  
干磨可以造成工具表面的温度上升到800~1000℃. 因此, 能在如此高温度下为切削工具提供保护的膜层已成为研究的热点. ZrAlN由于Al元素的存在可能具有高温稳定的结构和机械性能. 用直流磁控溅射的方法合成了ZrAlN 薄膜. 利用XRD与纳米压痕仪分析了反应气体分压和基底偏压对薄膜结构、机械性能及其高温热稳定性的影响. 在最佳条件(基底偏压-37 V, N2分压为2×10-5 Pa)制备的ZrAlN薄膜具有平滑的表面且其硬度具有热稳定性. 在退火之后, 该薄膜的应力由2.2 GPa降至0.7 GPa. 薄膜的高温热稳定性可能与Al2O3和ZrO2晶相的形成有着直接的联系.  相似文献   

5.
用大束流密度的钴金属离子注入硅能够直接合成性能良好的薄层硅化物. 束流密度为0.25~1.25 A/m2, 注入量为5 × 1017 cm-2. 用透射电子显微镜(TEM)和电子衍射(XRD)分析了注入层结构. 结果表明随束流密度的增加, 硅化钴相生长, 薄层硅化物的方块电阻RS明显下降. 当束流密度为0.75 A/m2时, RS明显地下降, 说明连续的硅化物已经形成. 当束流密度为1.25 A/m2时, 该值达到最小值3.1 W. XRD分析表明, 注入层中形成了3种硅化钴Co2Si, CoSi和CoSi2. 经过退火后, RS进一步地下降, RS最小可降至2.3 W, 说明硅化钴薄层质量得到了进一步的改善. 大束流密度注入和退火后, 硅化钴相进一步生长, Co2Si相消失. TEM对注入样品横截面观察表明, 连续硅化物层厚度为90~133 nm. 最优的钴注入量和束流密度分别为5 × 1017 cm-2和0.50 mA/cm2. 最佳退火温度和退火时间分别为900℃和10 s. 高温退火(1200℃)仍然具有很低的薄层电阻, 这充分说明硅化钴具有很好的热稳定性. 用离子注入Co所形成的硅化钴制备了微波功率器件Ohm接触电极, 当工作频率为590~610 MHz, 输出功率为18~20 W时, 同常规工艺相比, 发射极接触电阻下降到0.13~0.2倍, 结果器件的噪声明显地下降, 器件质量有了明显的提高.  相似文献   

6.
金属纳米晶的相稳定性   总被引:8,自引:0,他引:8  
根据热力学平衡条件, 建立了金属纳米晶的相平衡方程. 应用Fetch和Wagner的界面膨胀模型以及Smith和其合作者建立的普适状态方程, 对纳米晶界面的热力学量进行计算, 由此获得金属高温相可在较低的温度下存在的临界尺寸. 通过对元素Co的β相(fcc结构)和α相(hcp结构)纳米晶Gibbs自由能的计算表明, β相可在室温存在的临界尺寸和纳米晶界面处的过剩体积(ΔV)有关. 当ΔV 取10%时, β相应在35 nm以下稳定存在. 与Katakimi的实验较为符合. 对影响βCo稳定性的因素也作了讨论.  相似文献   

7.
采用射频溅射法分别在零磁场和72 kA/m的纵向静磁场下, 制备了结构为(F/SiO2)3/Ag/(SiO2/F)3 (F=Fe71.5Cu1Cr2.5V4Si12B9)的多层复合膜. 研究了沉积态样品的软磁特性和巨磁阻抗(GMI)效应. 结果表明, 在无磁场沉积态样品中未探测到GMI效应. 在沉积过程中加纵向磁场明显优化了材料的软磁性能, 从而获得显著的GMI效应. 在6.81 MHz的频率下, 最大纵向和横向GMI比分别高达45%和44%. 同时还分析了磁阻抗比、磁电阻比、磁电抗比和有效磁导率比随频率变化的行为, 发现磁场沉积态样品的纵向和横向GMI效应随频率变化的频谱曲线几乎重合. 阻抗在低频下主要是巨磁电感效应. 当频率 f >9 MHz时, 磁电抗比变为负值, 即电抗的性质从电感性变成了电容性.  相似文献   

8.
本文研究了熔体快淬工艺及添加元素Ti对Sm-Fe合金相的形成及结构的影响,成功制备了Sm3(Fe,Ti)29Nx/α-Fe双相纳米耦合永磁材料。研究发现,快淬薄带由Sm3(Fe,Ti)29和α-Fe两相组成,晶化前在纳米晶周围存在部分非晶相,晶化后的晶粒间晶界平直光滑、且晶粒间结合紧密没有界面相,为晶粒间直接接触耦合。对甩带后的样品采用750℃保温10min的晶化退火得到的颗粒比较细小且均匀。氮化磁粉磁滞回线的第二象限没有出现明显的台阶,表现为单相永磁材料的特点,说明硬磁相Sm3(Fe,Ti)29Nx与软磁相a-Fe晶粒之间的交换耦合作用已形成。  相似文献   

9.
采用化学水浴法沉积CdTe太阳电池的n型窗口层CdS多晶薄膜, 用近空间升华法制备吸收层CdTe薄膜. 为了获得优质的背接触, 对退火后的CdTe薄膜用湿化学法腐蚀一富Te层, 然后沉积背接触层. 结果表明:具有ZnTe/ZnTe: Cu 复合层的太阳电池性能优于其他背接触结构的电池. 最后, 采用激光刻蚀和机械刻蚀相结合, 制备了glass/SnO2:F/CdS/CdTe/ZnTe/ZnTe:Cu/Ni太阳电池小组件, 其中一个CdTe太阳电池小组件的效率达到了7.03% (开路电压Voc = 718.1 mV, 短路电流Isc = 98.49 mA, 填充因子53.68%, 面积54 cm2) (由中国科学院太阳光伏发电系统和风力发电系统质量检测中心测量).  相似文献   

10.
采用电沉积硫化亚铁膜之后再硫化的方法制备了FeS2薄膜材料. 即先用含铁和硫元素的水溶液在导电玻璃上电化学沉积FeS薄膜, 然后将薄膜在硫气氛中退火制得FeS2样品. 计算了电沉积FeS薄膜的实验参数, 研究了硫化过程中温度对FeS2结构的影响及晶粒的生长动力学过程, 计算了晶粒生长的表观活化能、生长速率常数及时间指数, 并对样品的电学性能进行了分析.  相似文献   

11.
基于铝诱导结晶化(AIC)方法,研究了不同溅射材料结构对多晶硅薄膜形成过程和材料特性的影响.首先利用射频溅射Si和直流溅射Al的方法,分别在普通玻璃衬底上沉积Si/Al/Glass,Al/Si/Glass,Si/Al/L/Si/Al/Glass三种不同结构的薄膜材料.采用相同的低温退火(500℃)工艺,对上述薄膜进行了多组时间下的退火Al诱导结晶处理.对退火处理后的样品去除表面多余Al之后进行了X射线衍射、电子显微镜表面观察和霍耳迁移率测试,分析其晶体质量特性和电学特性.结果表明,在足够长时间下,3种结构均可成功实现AIC多晶硅薄膜,其中采用多重周期性结构的薄膜结晶速度最快,并得到更优的结晶效果.  相似文献   

12.
从理论计算和实验验证两方面进行了氧缺位金红石型TiO2-x薄膜的电子结构和血液相容性关系的研究. 基于局域密度泛函理论, 采用第一性原理方法计算了不同氧缺位浓度下金红石型TiO2-x的电子结构. 计算结果表明, 在现实可行的氧缺位浓度范围内(小于或等于10%), 随着氧缺位浓度的增加, TiO2的禁带宽度增大, 氧化钛的半导体类型由p型向n型转变. 不同氧缺位浓度下TiO2的价带顶主要由O的2p轨道贡献, 导带底主要由Ti的3d轨道贡献. 氧缺位浓度的提高导致了 TiO2导带底电子态密度的增加. 当材料与血液接触时, 氧缺位TiO2-x薄膜的n型半导体和电子态占据导带底特征可抑制血液中纤维蛋白原向材料表面传递电荷, 进而抑制血小板的聚集和活化, 从而提高了金红石型TiO2-x薄膜的血液相容性.  相似文献   

13.
采用Sol-gel法在Pt/Ti/SiO2/Si衬底上制备了Bi3.25La0.75Ti3O12 (BLT)薄膜. 制备的BLT薄膜具有单一的钙钛矿晶格结构, 而且表面平整致密. 对700℃退火处理的BLT薄膜进行了铁电性能、疲劳特性和漏电流测试: 在测试电压为10 V时, 剩余极化值2Pr大约是18.6 μC/cm2, 矫顽电压2Vc大约为4.1 V; 经过1×1010次极化反转后, 剩余极化值下降了大约10%; 漏电流测试显示制备的BLT薄膜具有良好的绝缘性能. 室温下, 在测试频率1 kHz时, 薄膜的介电常数为176, 介电损耗为0.046.  相似文献   

14.
将真空共蒸发技术沉积的ZnTe/ZnTe:Cu复合薄膜应用于CdS/CdTe太阳电池, 作为碲化镉与金属背电极间的过渡层. 比较了有无ZnTe复合背接触层的两种CdTe电池的光、暗电流-电压(I-V)曲线和电容-电压(C-V)特性, 并研究了本征ZnTe薄膜厚度和背接触层的退火温度对电池性能的影响. 结果表明, 有复合背接触层的CdTe光伏器件, 能够消除暗I-V曲线饱和与光、暗I-V曲线交叉现象, 且填充因子在没有高阻透明薄膜的情况下达到了73%. 结合CdTe电池的能带图讨论了其中的原因.  相似文献   

15.
采用纳米孔吸杂方法对新型硅基材料SOI(silicon-on-insulator)中的Cu杂质进行了吸除研究. 室温下, 将3.5 ´ 1016 cm-2的H+或9 ´ 1016 cm-2的He+注入到SOI氧化埋层下面的硅衬底内, 700oC退火形成纳米孔, 研究纳米孔对SOI顶层硅中不同剂量Cu杂质(5 ´ 1013, 5 ´ 1014, 5 ´ 1015 cm-2)的吸除. 剖面透射电子显微镜(XTEM)与二次离子质谱(SIMS)分析表明, 700oC以上, Cu杂质可以穿过SIMOX和Smart-Cut材料不同的氧化埋层到达硅衬底, 并被纳米孔吸附. SIMOX氧化埋层界面的本征缺陷对Cu杂质具有一定的吸附作用, 但吸杂效果远远低于纳米孔吸杂, 且高温下会将杂质释放出来. Smart-Cut SOI的氧化埋层界面完整, 不具备吸杂作用. 1000℃退火后, 纳米孔可吸附高达3.5 ´ 1015 cm-2 以上的Cu杂质, 纳米孔吸杂效率随Cu注入剂量的降低而升高. 当顶层硅中Cu剂量低于5 ´ 1014 cm-2 时, 纳米孔吸杂效率达到90%以上, 并将顶层硅中Cu杂质浓度降低到原来的4%以下. 纳米孔吸杂是一条解决SOI杂质去除难题的有效途径.  相似文献   

16.
纳米硅薄膜材料在场发射压力传感器研制中的应用   总被引:3,自引:0,他引:3  
设计研制了一种基于量子隧道效应机制的场发射压力传感器原型器件, 用CVD技术制备了粒径为3 ~ 9 nm, 厚度为30 ~ 40 nm的纳米硅薄膜, 并同时把这种低维材料引入到传感器阴极发射尖锥的制作, 形成纳米硅薄膜为实体的发射体结构. 用HREM及TED分析了纳米硅态的显微特性, 用场发射扫描电子显微镜SEM分析了发射体及阵列的微观结构, 用HP4145B晶体管参数测试仪考察了传感器件的场发射特性. 实验结果表明, 当外加电场为5.6×105 V/m时, 器件有效区域发射电流密度可达53.5 A/m2.  相似文献   

17.
GaAs衬底生长的立方GaN晶片键合技术   总被引:2,自引:0,他引:2  
利用晶片键合技术通过多层金属膜成功地把立方相GaN LED结构键合到新衬底Si上, 并且利用湿法腐蚀技术去掉了原GaAs衬底. SEM和PL观察表明, 利用键合技术可以完整地把立方相GaN外延薄膜转移到新的衬底上而不改变外延层的物理和光学性质. XRD(S射线衍射)结果分析显示, 键合后的样品中出现了新的合金和化合物: AuGa2, Ni4N, 意味着用来作为黏附层和形成Ohm接触的Ni/Au膜与p-GaN形成了紧密的结合, 保证了金属膜与GaN层的牢固度和界面的小接触电阻, 成功地完成了键合, 为下一步以GaAs吸收衬底生长的GaN基器件的研制打下了基础.  相似文献   

18.
用磁控溅射法分两种顺序制备了系列厚度的[CoPt/Ag]n纳米多层膜, 600℃真空退火后, 进行了磁性测量和微结构分析. 研究表明, 退火后两种顺序制备的[CoPt/Ag]n多层膜有着不同的微结构和磁性能, 且膜厚越小差别越显著. 先沉积Ag层的[Ag/CoPt]n多层膜, 退火后更易于形成高有序化度的L10-CoPt相, 并具有较高的矫顽力. Ag作底层影响了CoPt无序立方向有序四方的转化是引起这种差别的可能原因. 剩磁曲线分析表明, Ag的掺杂有利于降低CoPt晶粒间的磁交换耦合作用.  相似文献   

19.
采用等离子体化学气相沉积(PECVD)及热退火方法制备了含硅量子点的Si Cx薄膜.透射电子显微镜(TEM)观测表明Si Cx薄膜中生长了大量硅量子点.制备了含Si Cx薄膜包裹硅量子点的双势垒存储器结构.TEM观测表明,采用上述工艺成功制备了Si3N4/Si Cx薄膜/Si-QDs/Si Cx薄膜/Si O2双势垒结构的存储器结构.利用硅量子点的库伦阻塞效应及量子限域效应,从理论上分析了双势垒硅量子点存储器的编程机制,建立了双势垒存储结构阈值电压漂移模型,模拟仿真表明双势垒存储器的阈值电压漂移要大于单势垒存储器,编程速度更快.存储结构C-V特性测试表明,样品在扫描栅压为±12 V时有10 V左右的存储窗口,证明双势垒存储结构具有良好载流子存储效应.  相似文献   

20.
用PECVD方法, 以固定的甲烷硅烷气体流量比([CH4]/[SiH4] = 1.2)和不同的氢稀释比(RH = [H2]/[CH4+SiH4] = 12, 22, 33, 102和135)制备了一系列的氢化非晶硅碳合金(a-SiC:H)薄膜. 运用紫外-可见光透射谱(UV-VIS)、红外吸收谱(IR)、Raman谱以及光荧光发射谱(PL)测量研究了氢稀释和高温退火对薄膜生长和光学特性的影响. 实验发现氢稀释使薄膜光学带隙展宽(从1.92到2.15 eV). 高氢稀释条件下制备的薄膜经过1250℃退火后在室温下观察到可见光发光峰, 峰位位于2.1 eV. 结合Raman谱分析, 认为发光峰源于纳米硅的量子限制效应, 纳米硅被Si-C和Si-O限制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号