首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
为了更好地模拟车辆的跟驰特性,在全速度差(full velocity difference, FVD)模型的基础上考虑前车与跟随车的车头间距、速度差、速度和加速度等因素,建立了一种基于动态安全车距的改进FVD跟驰模型。构建了可变车头时距模型量化前车加速度对跟驰车头间距的影响程度;应用小振幅扰动分析和长波展开进行了模型线性稳定性分析,推导了改进FVD模型的临界稳定性条件;设计环形道路上微扰动数值仿真实验,分析了扰动后的车辆跟驰行为特性,解析加速度参数对模型抗扰能力的影响。研究结果表明:考虑前车加速度信息可以降低扰动演化时的波动振幅,有助于提高车流的稳定性。  相似文献   

2.
为明确城市信号交叉口的车辆跟驰行为特性,基于自然驾驶试验数据,对车辆在减速、加速跟驰状态的车头间距、车头时距和相对速度进行了分布特征分析以及与跟驰速度的相关性分析。结果表明:减速跟驰状态的相对速度主要集中于[-3m/s,1m/s],加速跟驰状态主要集中于[-1m/s,3m/s];减速跟驰状态和加速跟驰状态的车头时距随后车跟驰速度变化趋势相同,确定了跟驰速度小于20km/h的车头时距阈值;去掉跟驰速度小于6km/h的数据后得到的减速跟驰、加速跟驰状态车头时距和车头间距均呈正偏态分布,车头间距集中于5-30m,车头时距集中于1.5s-3.5s;两种跟驰状态车头间距、车头时距的5th、50th、95th特征值与跟驰速度具有较强的相关性。  相似文献   

3.
为得到信号交叉口的车辆运行特性和驾驶模式,开展实车驾驶试验,采集车辆在自然驾驶状态下通过信号交叉口的速度、加速度等运行参数,得到了车辆速度和纵向加速度的变化趋势、分布范围和统计特征值,分析了车速与行驶距离的相关性,确定了减速停车和起步加速的驾驶模式。结果表明:车辆驶入交叉口时在停车前100米范围内车速下降最明显;而绿灯启亮后,车辆在头50米内速度提升最明显。减速距离与初速度之间具有较高的关联度,加速距离和稳定速度之间的关联度略低。减速度总体上大于加速度,85分位减速度为1.19 m/s2,85分位加速度为1 m/s2。减速度峰值出现在停车前5秒内,而加速度峰值出现在起步后的3秒内。本研究可为跟驰模型和微观交通仿真提供参数标定值,为城市交叉口信号配时和交通管理提供实际数据参考和理论依据。  相似文献   

4.
为研究道路交通流特性,基于车载高精度GPS跟驰试验数据进行车辆跟驰建模研究,结合深度学习理论和数据驱动方法,构建了基于粒子群优化(particle swarm optimization, PSO)的长短期记忆(long short term memory, LSTM)车辆跟驰模型。首先,清洗和平滑车辆轨迹数据,并对驾驶特征行为参数及相关关系进行研究,如加速度、车头时距以及速度与跟驰距离特性关系等。在此基础上,制定跟驰状态筛选规则;其次,构建考虑时间序列的PSO-LSTM模型,识别跟驰数据样本集,将当前时刻的前车速度、车头间距和上一时刻的车头时距作为模型输入,预测当前时刻的跟驰车速度;接着,选用25辆车跟驰试验的高精度GPS数据验证PSO-LSTM模型性能;最后,为验证该模型的优越性,选用传统机器学习SVR(support vector regression)模型以及深度学习LSTM模型作为对比。结果表明,基于粒子群优化的长短期记忆模型预测精度高达0.993,整体预测效果高于SVR模型和LSTM模型,其中预测误差指标MAPE(mean absolute percentage error)较SVR和LSTM分别降低了60.02%、1.52%。PSO算法进行超参数优化后的PSO-LSTM模型,能更好地模拟车辆的跟驰行为。  相似文献   

5.
用仿真分析方法,对可能用于车距自控系统的跟车模型的稳定性作了分析,主要内容包括:选定了3种可能用于车距自控系统的跟车模型,在以通行能力为约束的条件下,以前车突然制动与平稳降速2种典型驾驶行为和行驶车距与车速2种主要车辆行驶参数,对选定的3种跟车模型作了仿真,根据仿真结果给出了适用于车距自控系统的变速控制模型。  相似文献   

6.
基于全速度差(full velocity difference,FVD)模型,通过考虑期望间距,提出了一种推广的车辆跟驰模型,即扩展的全速度差(extended FVD,EFVD)模型;并给出能量耗散的计算公式,对EFVD模型的能耗进行了研究。信号灯车队启动问题的模拟结果表明EFVD模型的启动延时时间和启动波速均在允许的范围内,加速度较优化速度(optimal velocity,OV)模型和FVD模型略小,且加速过程更贴近现实情况。车队刹车问题的仿真结果表明EFVD模型不会产生不切实际的减速度问题。通过车队碰撞问题的模拟,可知EFVD模型模拟的车头距大于车辆长度,避免了车辆的碰撞。车流扰动问题的数值模拟结果表明考虑期望间距的影响可以增强交通流的稳定性,在一定程度上抑制交通阻塞。能耗仿真结果表明,EFVD模型的能耗比FVD模型的能耗小。  相似文献   

7.
 为研究面向车辆防撞系统的碰撞风险模型,分析了车辆碰撞风险的概率内涵,根据运动学理论并考虑车辆运行特征,建立了基于概率计算的侧向碰撞风险模型,运用Vissim微观交通仿真等方法模拟常见的车辆运行场景,利用输出数据离线计算风险值,并对仿真结果进行评价。将追尾碰撞发生的过程分为前车减速与前车减速条件下的碰撞两起事件,运用条件概率的思想求出追尾事故发生的概率来表征跟车风险。从安全的本质出发提出了跟车风险的表述方法,建立密度函数模型。在分析前车减速条件下追尾碰撞条件时,从汽车地面力学理论的角度补充考虑了制动系统作用时间、附着系数等影响因素,使模型更接近实际状况,并且将判断的标准由停车距离扩展到了制动全过程的位移。通过与其他风险模型产生的计算结果进行比较分析,发现基于概率计算的碰撞风险模型,能够更好地反映实际交通安全状态,更适用于车辆防碰撞系统。  相似文献   

8.
车载网是一种以车辆为通信节点的无线自组织网络,旨在实现车与车、车与基础设施之间的数据通信.车辆的高速移动性易引起网络拓扑结构的变化,进而降低数据包的传递率和路由协议的工作效率,甚至导致信道中断.目前,对于车载网通信协议和应用的研究主要借助仿真平台模拟实现,平台内嵌的车辆移动模型性能对协议的分析和研究至关重要.首先,对Simulation of Urban Mobility(SUMO)平台下常用的6种车辆跟驰模型进行了详细的描述;其次,分析并引入影响移动模型性能最明显的3种因素;最终,依托城市道路交通环境,通过设置不同的模拟场景对比分析了在不同跟驰模型作用下的车辆密度、车辆平均速度和道路占用率3个指标.详实的实验结果表明,Krauss模型具有最优异的性能.此外,通过仔细观察单个车辆的跟驰行为从微观上揭示了各模型的工作原理.  相似文献   

9.
葛婷  华凯  宗奕净  胡俊艳  周源 《科学技术与工程》2023,23(34):14791-14796
快速路入口区域车辆跟驰行为及安全间距会受到汇入车辆影响。为了探索快速路入口区域车辆的跟驰行为,利用无人机在200m高空对快速路入口区域进行高空悬停定点拍摄,并利用Tracker软件提取了车辆速度、车辆横纵坐标、加速度等参数。采用跟驰距离、相对跟驰速度绝对值及跟驰片段长度指标对快速路入口区域车辆的跟驰行为进行判断,确定了快速路入口区域跟驰行为判定准则。在此基础上,对交通流变化、车道分布、入口形式对跟驰行为的影响进行对比分析。研究发现:快速路入口区域车辆跟驰距离均值为26m,车辆跟驰距离集中分布在15~28m;相对跟驰速度绝对值均值为0.75m/s,且90%车辆相对速度绝对值小于1m/s;车辆跟驰距离和后车跟驰速度随交通流增加逐渐减小;快速路最内侧车道车辆跟驰距离和跟驰速度大于中间车道;直接式入口的主线车辆跟驰距离和跟驰速度大于平行式入口。本文研究成果可为快速路入口区域跟驰行为参数标定及管控提供参考依据。  相似文献   

10.
运行车速预测中的汽车换档   总被引:9,自引:6,他引:3  
针对汽车行驶中,驾驶员主要根据汽车的动力性进行减速换档的实际情况,在汽车加速换档的基础上,研究了汽车进行减速换档的规律。根据驾驶员实际操作规律,提出了动力换档法,以东风EQ 140为例,确定了汽车进行减速换档时的最佳运行速度。最后给出了汽车换档的速度损失计算公式。  相似文献   

11.
分析了车轮制动瞬态动力学,结合较精确的十五自由度空间刚体动力学模型,定量地分析了车轮抱死松开所获得的加速度值,并为防抱制动提供了准确地加减速度阅值,同时考虑到防抱制动系统本身的装置特性,提出了最佳而又符合实际的制动力短控制参数,使仿真结果更接近实际.  相似文献   

12.
绿色驾驶是可以使驾驶人在驾驶过程中节油减排的一系列驾驶措施。为了研究绿色驾驶的行为特征,建立了多车道元胞自动机模型进行仿真,并以北京北三环某路段作为仿真场景对模型进行标定和验证。利用该仿真模型,研究纵向驾驶行为和横向驾驶行为对交通运行、能源消耗以及尾气排放产生的影响。构建了绿色驾驶行为判别标准,并通过预测得到绿色驾驶行为特征。研究发现,缓慢加速、保持车速稳定、将车速保持在合理区间以及保持较大的安全间距是符合中国道路特性的绿色驾驶行为。  相似文献   

13.
为了探究山地城市异常驾驶行为的空间分布规律,基于车辆车载诊断(on-board diagnostics, OBD)数据建立了异常驾驶行为空间分布规律模型。首先,以重庆市6条主干道130个路段为研究对象,定性分析道路坡度、弯度、公交站和开口与异常驾驶行为间的关联性;然后,分别构建Possion回归模型和零膨胀Possion回归模型(ZIP)、零膨胀负二项回归模型(ZINB),对急加速、急减速、急转弯和超速行为发生频率的空间分布特征进行了描述;最后,随机选取路段进行模型验证。结果表明:对于急加速率、急减速率空间分布特征,Possion回归模型拟合效果较优,绝对误差集中在-20%~20%;急转弯率适宜采用ZINB回归模型,80.77%的绝对误差分布在-0.005~0.005;超速率适宜采用ZIP回归模型,71.15%的绝对误差基本分布在-0.002~0.002。  相似文献   

14.
基于神经网络方法的集成式驾驶员跟车模型   总被引:3,自引:0,他引:3  
为了提高驾驶辅助系统的跟车性能,基于神经网络方法建立了一种集成式驾驶员跟车模型.通过真实交通环境下的驾驶员实验获得了稳定跟车状态数据,并利用Kalman滤波器对数据进行了处理和估计.设计了以BP神经网络为核心的集成式模型结构,该模型以前车速度为输入,计算跟车过程中的两个特性参数并输入神经网络以模拟驾驶员控制的自车加速度.利用处理后的数据样本对网络进行了训练,并对该模型进行了仿真验证.仿真结果表明;神经网络模型具有模拟驾驶员跟车行为的能力,模型体现出较为准确的跟踪特性,并对不同的前车工况具有良好的适应性.  相似文献   

15.
分析汽车制动过程及制动过程中角速度、角加速度的变化规律 ,建立车轮动力学模型 根据产生最大制动力的车轮角加速度即临界角加速度及其变化规律 ,采用角加速度门限值作为控制参数 ,并以EQ1 40型汽车气制动系统为基础 ,建立电子防抱制动实验系统 通过转鼓实验台的多次实验 ,效果明显 ,所得出一些有益的结论和经验亦将有助于更深一步的研究  相似文献   

16.
着重从驾驶行为分析的角度出发,回顾了以往构建于控制论思想之上的车辆跟驰模型,特别是其中与人因素有关的GHR模型、碰撞避免模型、AP模型、基于模糊逻辑的模型、基于神经网络的模型、期望间距模型等,对各模型的构建理论和主要优缺点进行了详细阐述,从整体上揭示了上述模型构建过程中所忽视的用于刻画驾驶行为可变性特点的一些关键性问题,并结合当今交通领域最新的研究成果分别从应用领域专门化、研究手段多样化、研究层次深入化、模型构建实用化等方面预测了驾驶行为仿真模型未来的发展趋势.  相似文献   

17.
通过驾驶模拟实验,对在灾害性天气下的杭州湾大桥进出口加减速车道的运行速度进行了试验研究,建立了加减速车道的自回归与时间序列运行速度模型,该模型主要用于高速公路安全运行速度控制标准的制定,研究成果已在杭州湾跨海大桥上得以应用.  相似文献   

18.
为了解信号交叉口处绿灯充足时段交通违法监控是否对机动车车速及驾驶人驾驶行为决策产生影响,运用录像法,分别对经过青岛市黄岛区2类4个信号交叉口绿灯充足时段的机动车进行调查。采集了车辆经过交叉口的车速、加速度、所在车道等具体数据,对经过2类信号交叉口的车速及行为决策进行对比分析;并运用logistic回归模型建立信号交叉口驾驶行为决策模型。结果表明在绿灯充足时段,在装有交通违法监控的信号交叉口,进入交叉口前的机动车车速较低,且离散程度较小;进入装有监控的信号交叉口时,驾驶人采取匀速行为决策的比例比无监控情况高22.78%;较减速行为决策相比,加速和匀速行为决策与交通违法监控、车速及所在车道有关。  相似文献   

19.
城市十字交叉口汽车尾气污染扩散模式   总被引:5,自引:0,他引:5  
从交通流特性和街道交叉角度等方面概括了十字交叉口处影响汽车尾气污染排放扩散的一些特征,然后建立了一个十字交叉口汽车尾气污染扩散模式。该模式在普通的道路线源污染扩散模式基础上加入了考虑汽车排队等待以及拐弯变速的计算因子,是对前人模式的一种改进。  相似文献   

20.
针对自动驾驶车辆(automated vehicle, AV)与人工驾驶车辆(manual vehicle, MV)组成的混行跟驰环境,基于Waymo公开数据集研究混行环境中AV前车对MV后车跟驰行为的影响。首先,探究混行环境中期望安全裕度模型和智能驾驶人模型的建模能力和模型参数变化,研究表明,混行环境中MV跟驰行为的机制没有发生变化,但是MV驾驶人的减速敏感程度更低。其次,从跟驰安全性、稳定性和环境效应3个方面对混行跟驰行为进行进一步分析得到,混行环境中的MV跟驰行为的稳定性和环境效应得到了改善,但是安全性并没有发生变化。最后,通过对前车速度波动性进行讨论发现,AV前车主要是通过降低自身速度波动性,从而抑制MV后车的速度波动性,改善MV后车在稳定性及环境效应方面的表现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号