共查询到19条相似文献,搜索用时 78 毫秒
1.
利用射频磁控溅射技术在玻璃衬底上成功制备了In掺杂的ZnO(ZnO∶In)薄膜。X射线衍射(XRD)和原子力显微镜(AFM)的研究结果显示所制备的ZnO∶In为纤锌矿的多晶薄膜,具有高度C轴择优取向。气敏研究结果表明ZnO∶In薄膜对NO2气体有较强的敏感性,最佳工作温度为273 ℃,其敏感度与薄膜的厚度和NO2气体的体积分数有关。ZnO∶In薄膜对较高体积分数的NO2气体的灵敏度较高,而薄膜比厚膜的灵敏度高,厚度为90 nm的薄膜在273 ℃时对体积分数为2×10-5的NO2气体的敏感度高 相似文献
2.
目的 比较氮掺杂的氧化锌薄膜与纯氧化锌薄膜的发光特性.方法 用射频磁控溅射法,在玻璃衬底上通过控制氢气,氧气,氮气的流量,制备了纯氧化锌薄膜和氮掺杂的氧化锌薄膜样品.结果 通过比较纯氧化锌薄膜样品和氮掺杂的氧化锌薄膜样品的发光谱,在466nm(2.6 eV)附近发现了一个发光峰;氮掺杂的氧化锌薄膜样品的带隙比纯氧化锌薄膜样品的带隙宽.结论 氮掺杂的氧化锌薄膜在466 nm左右的发光峰与氮有关;带隙变宽的原因:一个是样品中的晶粒小引起的量子限制效应,另一个是压应力引起的氧化锌晶格中的氧原子的2p轨道和锌原子的4s轨道之间斥力增大. 相似文献
3.
以氧化锌(Zn O)掺杂氧化镓(Ga2O3)的陶瓷靶作为溅射靶材,采用射频磁控溅射技术在玻璃衬底上制备了透明导电的掺镓氧化锌(Zn O:Ga)薄膜.通过X射线衍射仪测试研究了衬底温度对薄膜结晶性能及其残余应力的影响.研究结果表明:所有Zn O:Ga薄膜均为六角纤锌矿型的多晶结构并具有(002)方向的择优取向特性,其结晶性能和残余应力与衬底温度密切相关.随着衬底温度的升高,薄膜的(002)择优取向程度和晶粒尺寸呈现出先增大后减小的变化趋势,而薄膜的残余压应力则单调减小.当衬底温度为400℃时,Zn O:Ga薄膜具有最大的晶粒尺寸(75.1 nm)、最大的织构系数TC(002)(2.995)、较小的压应力(-0.185 GPa)和最好的结晶性能. 相似文献
4.
In掺杂ZnO薄膜的制备及结构特性研究 总被引:1,自引:0,他引:1
通过射频反应共溅射法在硅衬底上制备了不同In掺杂量的ZnO薄膜,表征了薄膜的结构和表面形貌,研究了In掺杂量对ZnO薄膜的结构特性的影响.掠角X射线衍射分析结果表明制备的样品为ZnO薄膜,θ-2θ X射线衍射分析结果表明样品具有小的应力和C轴择优取向;原子力显微镜测试结果表明样品的颗粒大小和应力同其(002)衍射峰强度有关.薄膜具有较低的电阻率(10-1~100Ω穋m).当In掺杂量为3%时,样品的(002)衍射峰强度最高、压应力较小(7.3×108 N/m2). 相似文献
5.
研究射频磁控溅射技术制备的CeO2掺杂ZnO薄膜的结构及紫外光吸收性能。结果显示,ZnO(002)晶面的晶面间距增大,由于晶格畸变的增加导致薄膜中的内应力也相应增加,随着CeO2掺入量的增加,引起ZnO晶格的进一步松弛,因此ZnO将呈混晶方式生长;由于ZnO的晶粒同时有多个生长方向,因而抑制了ZnO晶粒(002)取向生长度的速度,导致了晶粒尺寸的逐渐降低,薄膜的C轴择优取向性随CeO2含量的升高而降低。CeO2掺杂样品与纯ZnO薄膜的吸收谱的形状没有大的改变,吸收峰形基本一致,掺CeO2使薄膜的紫外吸收显著增强,吸收边明显向短波方向移动,吸收边的斜率有微小提高,吸收峰宽度略微增大,吸收强度增加。 相似文献
6.
采用磁控溅射技术在SiO_2衬底上制备ZnO薄膜,并通过X射线衍射仪、原子力显微镜、紫外-可见分光光度计和荧光光谱仪对薄膜的晶体结构、表面形貌、带隙宽度和光致发光性质进行测试表征,结合飞秒激光(波长为800nm,脉宽50fs)和Z扫描方法测量该薄膜的三阶非线性光学特性.结果表明,其三阶非线性折射率和非线性吸收系数均为正值,分别为3.50×10-18 m2/W和2.88×10-11 m/W. 相似文献
7.
ZnO薄膜的射频磁控溅射法制备及特性 总被引:2,自引:0,他引:2
利用射频磁控溅射镀膜工艺,在石英玻璃衬底上成功制备了ZnO薄膜.采用原子力显微镜、X射线衍射、拉曼光谱、荧光分光光度计及椭偏等检测手段对其特性进行了测试、分析.研究结果表明:该薄膜具有良好的C轴取向结晶度;最佳激发波长为265.00nnl,光致发光峰分别位于362.00、421.06和486.06nm;437cm^-1是ZnO晶体的特征拉曼峰,该峰的出现与最强的X射线衍射(002)峰相对应;薄膜折射率为2.01. 相似文献
8.
采用磁控溅射工艺在玻璃衬底上沉积镓掺杂氧化物透明导电薄膜样品,通过X-射线衍射仪的测试表征及其定量分析研究了薄膜样品的结晶性质和微观结构性能.结果表明,所沉积的样品均为六角纤锌矿型的多晶结构并具有(002)择优取向生长特性,其晶格常数、晶面间距和Zn-O键长等参数与标准值一致.当膜厚为570 nm时,薄膜样品的(002... 相似文献
9.
Nd掺杂ZnO薄膜的制备及室温光致发光研究 总被引:1,自引:0,他引:1
通过射频磁控溅射技术在Si(111)衬底上制备了Nd掺杂ZnO薄膜.XRD和AFM分析表明,Nd掺杂没有改变ZnO结构,薄膜为纳米多晶结构.随Nd掺杂量的增加颗粒减小,表面粗糙,起伏较大.室温光致发光谱显示,薄膜出现了395 nm的强紫光峰和495 nm的弱绿光峰,Nd掺杂量和氧分压对PL谱发射峰强度产生了一定影响. 相似文献
10.
磁控溅射法在柔性衬底上制备ZnO:Al透明导电薄膜 总被引:3,自引:0,他引:3
用射频磁控溅射方法在有机柔性衬底上制备出好的附着性,低电阻率、高透射率ZnO:Al的透明导电膜,研究了薄膜的结构、电学和光学特性。 相似文献
11.
用JGP560I型超高真空多功能磁控溅射仪在Si(111)衬底上制备了ZnO薄膜。采用X-Ray衍射仪和电子薄膜应力分布测试仪等对其微结构和应力进行了测试分析。研究结果表明,ZnO薄膜具有良好的c轴择优取向;随着薄膜厚度的增加,薄膜中的平均应力减少;膜厚为744 nm时平均应力、应力差均最小,分别为5.973×108Pa、6.159×108Pa,应力分布较均匀。 相似文献
12.
采用射频磁控溅射技术在玻璃衬底上制备ZnO薄膜.利用X射线衍射仪、原子力显微镜,分析了ZnO薄膜的晶体结构和表面形貌.结果表明:所制备的 ZnO薄膜是具有(002)晶面择优生长的多晶薄膜.溅射气压为0.3Pa时,薄膜的晶粒尺寸较大,结晶度提高. 相似文献
13.
采用射频磁控溅射法在玻璃衬底上制备ZnO薄膜.用X射线衍射仪(XRD)、扫描电镜(SEM)对不同衬底温度下制备薄膜的相结构和表面形貌进行分析.结果表明,在衬底温度为400℃时制备的ZnO薄膜表面光滑,晶粒尺寸均匀,结构致密,且沿c轴择优生长. 相似文献
14.
射频磁控溅射制备SiO_2薄膜及性能表征 总被引:1,自引:0,他引:1
采用射频磁控溅射技术,制备4种不同溅射时间的SiO2薄膜.用XRD、PL、FTIR、UV-Vis等对薄膜的微结构、发光、红外吸收以及透、反射进行表征.结果表明:SiO2薄膜仍呈四方晶体结构,平均晶粒尺寸在17.39~19.92nm之间;在430nm附近出现了发光峰,在1049~1022cm-1之间出现了明显的红外吸收峰,且随着溅射时间的增加发生红移;在可见光范围内平均透射率大于85%. 相似文献
15.
溅射法制备的ZnO薄膜的光发射 总被引:1,自引:0,他引:1
报道了用射频磁控溅射法在硅衬底上制备出具有好的(002)择优取向的多晶ZnO薄膜,在514nm处观察到显著的单色绿光发射峰;且随着氧分压的增加,绿光发射峰的强度减弱.经真空中退火该发射峰增强;而在氧气中退火该发射峰强度减弱.该发射峰强度依赖于氧分压的事实表明:514nm绿光发射峰与ZnO薄膜中的氧空位缺密切相关,认为它来自于氧空位缺陷深施主能级上的电子到价带顶上的跃迁. 相似文献
16.
射频磁控溅射沉积SiO2膜的研究 总被引:2,自引:0,他引:2
研究以射频磁控溅射法在Si衬底上沉积SiO2膜.这一方法避免了高温氧化法对器件性能的损害.在结构和物理性能上对SiO2进行了多方面的测试和分析.结果表明,SiO2膜具有:1)微晶结构,结构致密、表面均匀、无针孔等.2)优良的物理性能,腐蚀速率(在P腐蚀液中)0.20~0.24nm/s,击穿场强2.6×107~4.4×107V/cm.可以得出结论:射频磁控溅射法沉积的SiO2膜与热氧化法沉积的SiO2膜具有相同的物理性质. 相似文献
17.
磁控溅射真空制膜技术 总被引:5,自引:0,他引:5
利用JGP-560CⅧ型带空气锁的超高真空多功能溅射系统在Si(100)和玻璃基底上沉积了介质薄膜、半导体薄膜、金属薄膜和磁性薄膜,通过实验研究得到各种薄膜较好的镀膜条件;并采用可变入射角椭圆偏振光谱仪对其中一些薄膜的光学性质进行了分析,研究了制备条件对薄膜在可见光范围内光学性质的影响;我们还研究了直流溅射、射频溅射、反应溅射的特点和它们的适用范围。 相似文献
18.
RF磁控溅射制备TiO2薄膜及其性能讨论 总被引:3,自引:0,他引:3
用RF磁控溅射法制备了TiO2薄膜,考察了工作压强、靶与基片距离对薄膜沉积速率、均匀性的影响以及靶材料、基片及退火温度对薄膜晶体结构的影响.获得的,TiO2薄膜在很宽的温度范围(400~900℃)内保持锐钛矿型晶体结构. 相似文献
19.
采用射频磁控溅射法在玻璃衬底上制备出含Ag量不同的Ag掺杂ZnO:Ag薄膜,利用X射线衍射仪、X射线光电子能谱仪及荧光分光光度汁研究了不同Ag掺杂量对ZnO薄膜结构及荧光发射谱的影响.在室温下测量了样品的光致发光谱,所有样品都出现了446nm左右的蓝色发光峰,在掺杂以后的样品中观察到波长位于368 nm左右的较强紫外发射.结合x射线衍射仪、光电子能谱仪等的测量结果,分析认为,样品紫外光发射的显著增强源于Ag掺杂以后在晶粒间界形成的大量激子,而蓝光的发射来源于Zn空位. 相似文献