首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple D2 dopamine receptors produced by alternative RNA splicing   总被引:16,自引:0,他引:16  
Dopamine receptor belong to a large class of neurotransmitter and hormone receptors that are linked to their signal transduction pathways through guanine nucleotide binding regulatory proteins (G proteins). Pharmacological, biochemical and physiological criteria have been used to define two subcategories of dopamine receptors referred to as D1 and D2. D1 receptors activate adenylyl cyclase and are coupled with the Gs regulatory protein. By contrast, activation of D2 receptors results in various responses including inhibition of adenylyl cyclase, inhibition of phosphatidylinositol turnover, increase in K+ channel activity and inhibition of Ca2+ mobilization. The G protein(s) linking the D2 receptors to these responses have not been identified, although D2 receptors have been shown to both copurify and functionally reconstitute with both Gi and Go related proteins. The diversity of responses elicited by D2-receptor activation could reflect the existence of multiple D2 receptor subtypes, the identification of which is facilitated by the recent cloning of a complementary DNA encoding a rat D2 receptor. This receptor exhibits considerable amino-acid homology with other members of the G protein-coupled receptor superfamily. Here we report the identification and cloning of a cDNA encoding an RNA splice variant of the rat D2 receptor cDNA. This cDNA codes for a receptor isoform which is predominantly expressed in the brain and contains an additional 29 amino acids in the third cytoplasmic loop, a region believed to be involved in G protein coupling.  相似文献   

2.
Cloning and expression of a rat D2 dopamine receptor cDNA   总被引:24,自引:0,他引:24  
Dopamine receptors are classified into D1 and D2 subtypes on the basis of their pharmacological and biochemical characteristics. The D2 dopamine receptor has been implicated in the pathophysiology and treatment of movement disorders, schizophrenia and drug addiction. The D2 dopamine receptor interacts with guanine nucleotide-binding proteins to induce second messenger systems. Other members of the family of receptors that are coupled to G proteins share a significant similarity in primary amino-acid sequence and exhibit an archetypical topology predicted to consist of seven putative transmembrane domains. We have taken advantage of the expected nucleotide sequence similarities among members of this gene family to isolate genes coding for new receptors. Using the hamster beta 2-adrenergic receptor gene as a hybridization probe we have isolated related genes including a cDNA encoding the rat D2 dopamine receptor. This receptor has been characterized on the basis of three criteria: the deduced amino-acid sequence which reveals that it is a member of the family of G-protein-coupled receptors; the tissue distribution of the mRNA which parallels that of the D2 dopamine receptor; and the pharmacological profile of mouse fibroblast cells transfected with the cDNA.  相似文献   

3.
Dopamine receptors belong to a superfamily of receptors that exert their biological effects through guanine nucleotide-binding (G) proteins. Two main dopamine receptor subtypes have been identified, D1 and D2, which differ in their pharmacological and biochemical characteristics. D1 stimulates adenylyl cyclase activity, whereas D2 inhibits it. Both receptors are primary targets for drugs used to treat many psychomotor diseases, including Parkinson's disease and schizophrenia. Whereas the dopamine D1 receptor has been cloned, biochemical and behavioural data indicate that dopamine D1-like receptors exist which either are not linked to adenylyl cyclase or display different pharmacological activities. We report here the cloning of a gene encoding a 477-amino-acid protein with strong homology to the cloned D1 receptor. The receptor, called D5, binds drugs with a pharmacological profile similar to that of the cloned D1 receptor, but displays a 10-fold higher affinity for the endogenous agonist, dopamine. As with D1, the dopamine D5 receptor stimulates adenylyl cyclase activity. Northern blot and in situ hybridization analyses reveal that the receptor is neuron-specific, localized primarily within limbic regions of the brain; no messenger RNA was detected in kidney, liver, heart or parathyroid gland. The existence of a dopamine D1-like receptor with these characteristics had not been predicted and may represent an alternative pathway for dopamine-mediated events and regulation of D2 receptor activity.  相似文献   

4.
Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor   总被引:45,自引:0,他引:45  
Angiotensin II is an important effector molecule controlling blood pressure and volume in the cardiovascular system. Its importance is manifested by the efficacy of angiotensin-converting enzyme inhibitors in the treatment of hypertension and congestive heart failure. Angiotensin II interacts with two pharmacologically distinct subtypes of cell-surface receptors, AT1 and AT2. AT1 receptors seem to mediate the major cardiovascular effects of angiotensin II. Here we report the isolation by expression cloning of a complementary DNA encoding a unique protein with the pharmacological specificity of a vascular AT1 receptor. Hydropathic modelling of the deduced protein suggests that it shares the seven-transmembrane-region motif with the G protein-coupled receptor superfamily. Knowledge of the AT1 receptor primary sequence should now permit structural analysis, definition of the angiotensin II receptor gene family and delineation of the contribution of AT receptors to the genetic component of hypertension.  相似文献   

5.
Molecular cloning and expression of the gene for a human D1 dopamine receptor   总被引:38,自引:0,他引:38  
The diverse physiological actions of dopamine are mediated by its interaction with two basic types of G protein-coupled receptor, D1 and D2, which stimulate and inhibit, respectively, the enzyme adenylyl cyclase. Alterations in the number or activity of these receptors may be a contributory factor in diseases such as Parkinson's disease and schizophrenia. Here we describe the isolation and characterization of the gene encoding a human D1 dopamine receptor. The coding region of this gene is intronless, unlike the gene encoding the D2 dopamine receptor. The D1 receptor gene encodes a protein of 446 amino acids having a predicted relative molecular mass of 49,300 and a transmembrane topology similar to that of other G protein-coupled receptors. Transient or stable expression of the cloned gene in host cells established specific ligand binding and functional activity characteristic of a D1 dopamine receptor coupled to stimulation of adenylyl cyclase. Northern blot analysis and in situ hybridization revealed that the messenger RNA for this receptor is most abundant in caudate, nucleus accumbens and olfactory tubercle, with little or no mRNA detectable in substantia nigra, liver, kidney, or heart. Several observations from this work in conjunction with results from other studies are consistent with the idea that other D1 dopamine receptor subtypes may exist.  相似文献   

6.
The Dscam gene gives rise to thousands of diverse cell surface receptors thought to provide homophilic and heterophilic recognition specificity for neuronal wiring and immune responses. Mutually exclusive splicing allows for the generation of sequence variability in three immunoglobulin ecto-domains, D2, D3 and D7. We report X-ray structures of the amino-terminal four immunoglobulin domains (D1-D4) of two distinct Dscam isoforms. The structures reveal a horseshoe configuration, with variable residues of D2 and D3 constituting two independent surface epitopes on either side of the receptor. Both isoforms engage in homo-dimerization coupling variable domain D2 with D2, and D3 with D3. These interactions involve symmetric, antiparallel pairing of identical peptide segments from epitope I that are unique to each isoform. Structure-guided mutagenesis and swapping of peptide segments confirm that epitope I, but not epitope II, confers homophilic binding specificity of full-length Dscam receptors. Phylogenetic analysis shows strong selection of matching peptide sequences only for epitope I. We propose that peptide complementarity of variable residues in epitope I of Dscam is essential for homophilic binding specificity.  相似文献   

7.
Human dopamine D1 receptor encoded by an intronless gene on chromosome 5   总被引:28,自引:0,他引:28  
Receptors for dopamine have been classified into two functional types, D1 and D2. They belong to the family of receptors acting through G (or guanine nucleotide-binding) proteins. D2 receptors inhibit adenylyl cyclase, but D1 receptors stimulate adenylyl cyclase and activate cyclic AMP-dependent protein kinases. Dopamine D1 and D2 receptors are targets of drug therapy in many psychomotor disorders, including Parkinson's disease and schizophrenia, and may also have a role in drug addiction and alcoholism. D1 receptors regulate neuron growth and differentiation, influence behaviour and modify dopamine D2 receptor-mediated events. We report here the cloning of the D1 receptor gene, which resides on an intronless region on the long arm of chromosome 5, near two other members of the G-linked receptor family. The expressed protein, encoded by 446 amino acids, binds drugs with affinities identical to the native human D1 receptor. The presence of a D1 receptor gene restriction fragment length polymorphism will be helpful for future disease linkage studies.  相似文献   

8.
Muscarinic acetylcholine receptors (mAChRs), like many other neurotransmitter and hormone receptors, transduce agonist signals by activating G proteins to regulate ion channel activity and the generation of second messengers via the phosphoinositide (PI) and adenylyl cyclase systems. Human mAChRs are a family of at least four gene products which have distinct primary structures, ligand-binding properties and patterns of tissue-specific expression. To examine the question of whether functional differences exist between multiple receptor subtypes, we have investigated the ability of each subtype to regulate PI hydrolysis and adenylyl cyclase when expressed individually in a cell lacking endogenous mAChRs. We show that the HM2 and HM3 mAChRs efficiently inhibit adenylyl cyclase activity but poorly activate PI hydrolysis. In contrast, the HM1 and HM4 mAChRs strongly activate PI hydrolysis, but do not inhibit adenylyl cyclase, and in fact can substantially elevate cAMP levels. Interestingly, the subtypes that we find to be functionally similar are also more similar in sequence. Our results indicate that the different receptor subtypes are functionally specialized.  相似文献   

9.
T Sakurai  M Yanagisawa  Y Takuwa  H Miyazaki  S Kimura  K Goto  T Masaki 《Nature》1990,348(6303):732-735
Endothelin-1 was initially identified as a 21-residue potent vasoconstrictor peptide produced by vascular endothelial cells, but was subsequently found to have many effects on both vascular and non-vascular tissues. The discovery of three isopeptides of the endothelin family, ET-1, ET-2 and ET-3, each possessing a diverse set of pharmacological activities of different potency, suggested the existence of several different endothelin receptor subtypes. Endothelins may elicit biological responses by various signal-transduction mechanisms, including the G protein-coupled activation of phospholipase C and the activation of voltage-dependent Ca2+ channels. Thus, different subtypes of the endothelin receptor may use different signal-transduction mechanisms. Here we report the cloning of a complementary DNA encoding one subtype belonging to the superfamily of G protein-coupled receptors. COS-7 cells transfected with the cDNA express specific and high-affinity binding sites for endothelins, responding to binding by the production of inositol phosphates and a transient increase in the concentration of intracellular free Ca2+. The three endothelin isopeptides are roughly equipotent in displacing 125I-labelled ET-1 binding and causing Ca2+ mobilization. A messenger RNA corresponding to the cDNA is detected in many rat tissues including the brain, kidney and lung but not in vascular smooth muscle cells. These results indicate that this cDNA encodes a 'nonselective' subtype of the receptor which is different from the vascular smooth muscle receptor.  相似文献   

10.
Cloning and expression of human and rat D1 dopamine receptors   总被引:25,自引:0,他引:25  
The importance of the dopaminergic system in brain function has been emphasized by its association with neurological and psychiatric disorders such as Parkinson's disease and schizophrenia. On the basis of their biochemical and pharmacological characteristics, dopamine receptors are classified into D1 and D2 subtypes. As the most abundant dopamine receptor in the central nervous system, D1 receptors seem to mediate some behavioural responses, modulate activity of D2 dopamine receptors, and regulate neuron growth and differentiation. The D dopamine receptor has been cloned by low-stringency screening. We report here the cloning of human and rat D1 dopamine receptors by applying an approach based on the polymerase chain reaction. The cloned human D1 dopamine receptor has been characterized on the basis of four criteria: the deduced amino-acid sequence, which reveals that it is a G protein-coupled receptor; the tissue distribution of its messenger RNA, which is compatible with that of the D1 dopamine receptor; its pharmacological profile when transfected into COS-7 cells; and its ability to stimulate the accumulation of cyclic AMP in human 293 cells.  相似文献   

11.
C L Chio  G F Hess  R S Graham  R M Huff 《Nature》1990,343(6255):266-269
  相似文献   

12.
The recent cloning of the complementary DNAs and/or genes for several receptors linked to guanine nucleotide regulatory proteins including the adrenergic receptors (alpha 1, alpha 2A, alpha 2B, beta 1, beta 2), several subtypes of the muscarinic cholinergic receptors, and the visual 'receptor' rhodopsin has revealed considerable similarity in the primary structure of these proteins. In addition, all of these proteins contain seven putative transmembrane alpha-helices. We have previously described a genomic clone, G-21, isolated by cross-hybridization at reduced stringency with a full length beta 2-adrenergic receptor probe. This clone contains an intronless gene which, because of its striking sequence resemblance to the adrenergic receptors, is presumed to encode a G-protein-coupled receptor. Previous attempts to identify this putative receptor by expression studies have failed. We now report that the protein product of the genomic clone, G21, transiently expressed in monkey kidney cells has all the typical ligand-binding characteristics of the 5-hydroxytryptamine (5-HT1A) receptor.  相似文献   

13.
Liu F  Wan Q  Pristupa ZB  Yu XM  Wang YT  Niznik HB 《Nature》2000,403(6767):274-280
GABA(A) (gamma-aminobutyric-acid A) and dopamine D1 and D5 receptors represent two structurally and functionally divergent families of neurotransmitter receptors. The former comprises a class of multi-subunit ligand-gated channels mediating fast interneuronal synaptic transmission, whereas the latter belongs to the seven-transmembrane-domain single-polypeptide receptor superfamily that exerts its biological effects, including the modulation of GABA(A) receptor function, through the activation of second-messenger signalling cascades by G proteins. Here we show that GABA(A)-ligand-gated channels complex selectively with D5 receptors through the direct binding of the D5 carboxy-terminal domain with the second intracellular loop of the GABA(A) gamma2(short) receptor subunit. This physical association enables mutually inhibitory functional interactions between these receptor systems. The data highlight a previously unknown signal transduction mechanism whereby subtype-selective G-protein-coupled receptors dynamically regulate synaptic strength independently of classically defined second-messenger systems, and provide a heuristic framework in which to view these receptor systems in the maintenance of psychomotor disease states.  相似文献   

14.
The mas oncogene encodes an angiotensin receptor   总被引:24,自引:0,他引:24  
T R Jackson  L A Blair  J Marshall  M Goedert  M R Hanley 《Nature》1988,335(6189):437-440
The class of receptors coupled to GTP-binding proteins share a conserved structural motif which is described as a 'seven-transmembrane segment' following the prediction that these hydrophobic segments form membrane-spanning alpha-helices. Identified examples include the mammalian opsins, alpha 1-, alpha 2-, beta 1- and beta 2-adrenergic receptors, the muscarinic receptor family, the 5-HT1C-receptor, and the substance-K receptor. In addition, two mammalian genes have been identified that code for predicted gene products with sequence similarity to these receptors, but whose ligand specificity is unknown namely, G21 and the mas oncogene. The mas oncogene shows the greatest sequence similarity to the substance-K receptor, and on this basis it was predicted that it would encode a peptide receptor with mitogenic activity which would act through the inositol lipid signalling pathways. The mas oncogene product was transiently expressed in Xenopus oocytes, and stably expressed in a transfected mammalian cell line. The results demonstrate that the mas gene product is a functional angiotensin receptor.  相似文献   

15.
Cloning and expression of a cDNA encoding an endothelin receptor   总被引:57,自引:0,他引:57  
H Arai  S Hori  I Aramori  H Ohkubo  S Nakanishi 《Nature》1990,348(6303):730-732
Endothelins are a newly described peptide family consisting of three peptides (ET-1, ET-2 and ET-3) which are the most potent vasoconstrictive peptides known. They are crucial in the regulation of vascular smooth muscle tone. The diverse functions of endothelins are thought to be mediated by interaction with many different receptors coupled to the inositol phosphate/calcium ion messenger pathway. However, because of the structural resemblance of the three peptides, the presence and nature of multiple endothelin receptors remain to be elucidated. We report here the cloning of a complementary DNA encoding a bovine endothelin receptor, which has a transmembrane topology similar to that of other G protein-coupled receptors and shows specific binding, with the highest selectivity to ET-1 in animal cells transfected with the cloned cDNA. This receptor messenger RNA is widely distributed in the central nervous system and peripheral tissues, particularly in the heart and lung. Our results support the view that there are other receptor subtypes.  相似文献   

16.
17.
The inhibition of voltage-dependent Ca2+ channels in secretory cells by plasma membrane receptors is mediated by pertussis toxin-sensitive G proteins. Multiple forms of G proteins have been described, differing principally in their alpha subunits, but it has not been possible to establish which G-protein subtype mediates inhibition by a specific receptor. By intranuclear injection of antisense oligonucleotides into rat pituitary GH3 cells, the essential role of the Go-type G proteins in Ca(2+)-channel inhibition is established: the subtypes Go1 and Go2 mediate inhibition through the muscarinic and somatostatin receptors, respectively.  相似文献   

18.
The adenylate cyclase system, which consists of a catalytic moiety and regulatory guanine nucleotide-binding proteins, provides the effector mechanism for the intracellular actions of many hormones and drugs. The tissue specificity of the system is determined by the particular receptors that a cell expresses. Of the many receptors known to modulate adenylate cyclase activity, the best characterized and one of the most pharmacologically important is the beta-adrenergic receptor (beta AR). The pharmacologically distinguishable subtypes of the beta-adrenergic receptor, beta 1 and beta 2 receptors, stimulate adenylate cyclase on binding specific catecholamines. Recently, the avian erythrocyte beta 1, the amphibian erythrocyte beta 2 and the mammalian lung beta 2 receptors have been purified to homogeneity and demonstrated to retain binding activity in detergent-solubilized form. Moreover, the beta-adrenergic receptor has been reconstituted with the other components of the adenylate cyclase system in vitro, thus making this hormone receptor particularly attractive for studies of the mechanism of receptor action. This situation is in contrast to that for the receptors for growth factors and insulin, where the primary biochemical effectors of receptor action are unknown. Here, we report the cloning of the gene and cDNA for the mammalian beta 2AR. Analysis of the amino-acid sequence predicted for the beta AR indicates significant amino-acid homology with bovine rhodopsin and suggests that, like rhodopsin, beta AR possesses multiple membrane-spanning regions.  相似文献   

19.
A Katz  D Wu  M I Simon 《Nature》1992,360(6405):686-689
The activation of heterotrimeric G proteins results in the exchange of GDP bound to the alpha-subunit for GTP and the subsequent dissociation of a complex of the beta- and gamma-subunits (G beta gamma). The alpha-subunits of different G proteins interact with a variety of effectors, but less is known about the function of the free G beta gamma complex. G beta gamma has been implicated in the activation of a cardiac potassium channel, a retinal phospholipase A2 (ref. 9) and a specific receptor kinase, and in vitro reconstitution experiments indicate that the G beta gamma complex can act with G alpha subunit to modulate the activity of different isoforms of adenylyl cyclase. Of two phospholipase activities that can be separated in extracts of HL-60 cells, purified G beta gamma is found to activate one of them. Here we report that in co-transfection assays G beta gamma subunits specifically activate the beta 2 and not the beta 1 isoform of phospholipase, which acts on phosphatidylinositol. We use transfection assays to show also that receptor-mediated release of G beta gamma from G proteins that are sensitive to pertussis toxin can result in activation of the phospholipase. This effect may be the basis of the pertussis-toxin-sensitive phospholipase C activation seen in some cell systems (reviewed in refs 13 and 14).  相似文献   

20.
We have deduced the entire 1,370-amino-acid sequence of the human insulin receptor precursor from a single complementary DNA clone. The precursor starts with a 27-amino-acid signal sequence, followed by the receptor alpha-subunit, a precursor processing enzyme cleavage site, then the beta-subunit containing a single 23-amino-acid transmembrane sequence. There are sequence homologies to human epidermal growth factor receptor and the members of the src family of oncogene products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号