共查询到18条相似文献,搜索用时 62 毫秒
1.
设G=(V,E)是一个图,一个双值函数f:■,如果对任意顶点v∈V,均有■成立,则称f为图G的一个符号控制函数。图G的符号控制数定义为■为图G的一个符号控制函数}。通过列举图例验证了以往研究中的部分结果是错误的,并重新确定了两类乘积图C_n×P_3和P_n×P_3的符号控制数。 相似文献
2.
3.
4.
5.
6.
给出基于对控制数与双控制数强相等的图的一个性质,并依据该性质,刻画了基于对控制数与双控制数强相等的树及单圈图. 相似文献
7.
研究了图的控制数及全控制数,对满足一定条件的图给出了图的控制数及全控制数的估计。 相似文献
8.
丁超 《安庆师范学院学报(自然科学版)》2016,22(2)
图的控制数有着重要的应用背景,严格强控制数是图的众多控制数中的一种。本文得到n阶图的严格强控制数的下界,并给出一些特殊图类的严格强控制数的上界。 相似文献
9.
文章研究了两连通图G1和G2的强乘积图G1G2的限制边连通度,给出了强乘积图的限制边连通度的一个上界,并确定一类特殊强乘积图的限制边连通度. 相似文献
10.
用k1>0和δi表示图Gi(i=1,2)的连通度和最小度,给出了无向图强乘积的连通度一个下界κ(G1(□×)G2)≥min{κ1(1+δ2),k2(1+δ1)}. 相似文献
11.
研究了图的 Fractional 控制问题,主要给出了关于联图的 Fractional 控制数的1个上界,由此确定了几类特殊联图的 Fractional 控制数,并推广了部分已知的结果。 相似文献
12.
对于一个非空图G=(V,E)和一个函数f:E→{-1,+1},若SE,则记f(S)=∑e∈Sf(e).若对于G中每个非平凡的团K均满足f(E(K))≥1,则f被称为G的一个符号团控制函数,G的符号团控制数表达为 相似文献
13.
通过对图G的边集分析的方法,对图的符号星k控制数进行研究,确定了几类图的符号星k控制数 相似文献
14.
设G是具有顶点集{t0,t1,…,tn-1}的轮,或扇,或星,其中t0为最大度点,且n≥5.G[hn]是图G与顶点不相交图序列hn=(Hi)i∈{0,1,…,n-1}的广义字典积,其中每一个Hi为m阶简单图.论文得到了以下结果:(1)若H0为完全图的补图,则G[hn]的全色数为(n-1)m+1;(2)若H0为完全图,则G[hn]的全色数为mn;(3)若H0为二部图,则G[hn]的全色数为Δ(H0)+(n-1)m+1,其中Δ(H0)表示图H0的最大度;(4)若H0为m阶圈,m≥3,则G[hn]的全色数为(n-1)m+3. 相似文献
15.
设G=(V,E)是一个没有孤立顶点的图,如果一个函数f:E→{+1,-1},对一切v∈V(G)满足∑e∈E(v)f(e)≥1成立,则称f为图G的一个符号星控制函数。图G的符号星控制数定义为γ’ss(G)=min{∑e∈E(v)f(e)∣f为G的符号星控制函数}。在图的符号星控制概念的基础上,确定了两类特殊图的符号星控制数。 相似文献
16.
邵泽辉 《成都大学学报(自然科学版)》2013,32(1):32-35
给定一个图G和正整数k,图的彩虹控制函数f是满足下列条件的映射f:V(G)→2{1,2,…,k},使得对某个顶点v满足f(v)=,则∪u∈N(v)f(u)={1,2,…,k},其中V(G)是图G的顶点集,N(v)表示所有与v相邻的顶点的集合.彩虹控制函数f的权定义为w(f)=∑v∈V(G)|f(v)|.图的k-彩虹控制数γrk(G)是所有彩虹控制函数的权中的最小权.研究了2-彩虹控制函数的启发式算法的网格图的构造方法,实验结果表明,基于禁忌搜索策略的模拟退火算法比传统的模拟退火算法具有较好的效果. 相似文献
17.
图的弱罗马控制数是图的弱罗马控制函数的最小权,记为γr(G).用逻辑推理和逐步分析法,刻画了弱罗马控制数等于最小控制数加1的图(即γr(G)=γ(G)+1)的特征. 相似文献
18.