共查询到20条相似文献,搜索用时 15 毫秒
1.
March HN Rust AG Wright NA ten Hoeve J de Ridder J Eldridge M van der Weyden L Berns A Gadiot J Uren A Kemp R Arends MJ Wessels LF Winton DJ Adams DJ 《Nature genetics》2011,43(12):1202-1209
The evolution of colorectal cancer suggests the involvement of many genes. To identify new drivers of intestinal cancer, we performed insertional mutagenesis using the Sleeping Beauty transposon system in mice carrying germline or somatic Apc mutations. By analyzing common insertion sites (CISs) isolated from 446 tumors, we identified many hundreds of candidate cancer drivers. Comparison to human data sets suggested that 234 CIS-targeted genes are also dysregulated in human colorectal cancers. In addition, we found 183 CIS-containing genes that are candidate Wnt targets and showed that 20 CISs-containing genes are newly discovered modifiers of canonical Wnt signaling. We also identified mutations associated with a subset of tumors containing an expanded number of Paneth cells, a hallmark of deregulated Wnt signaling, and genes associated with more severe dysplasia included those encoding members of the FGF signaling cascade. Some 70 genes had co-occurrence of CIS pairs, clustering into 38 sub-networks that may regulate tumor development. 相似文献
2.
3.
4.
Julien SG Dubé N Read M Penney J Paquet M Han Y Kennedy BP Muller WJ Tremblay ML 《Nature genetics》2007,39(3):338-346
We investigated the role of protein tyrosine phosphatase 1B (PTP1B) in mammary tumorigenesis using both genetic and pharmacological approaches. It has been previously shown that transgenic mice with a deletion mutation in the region of Erbb2 encoding its extracellular domain (referred to as NDL2 mice, for 'Neu deletion in extracellular domain 2') develop mammary tumors that progress to lung metastasis. However, deletion of PTP1B activity in the NDL2 transgenic mice either by breeding with Ptpn1-deficient mice or by treatment with a specific PTP1B inhibitor results in significant mammary tumor latency and resistance to lung metastasis. In contrast, specific overexpression of PTP1B in the mammary gland leads to spontaneous breast cancer development. The regulation of ErbB2-induced mammary tumorigenesis by PTB1B occurs through the attenuation of both the MAP kinase (MAPK) and Akt pathways. This report provides a rationale for the development of PTP1B as a new therapeutic target in breast cancer. 相似文献
5.
Floyd JA Gold DA Concepcion D Poon TH Wang X Keithley E Chen D Ward EJ Chinn SB Friedman RA Yu HT Moriwaki K Shiroishi T Hamilton BA 《Nature genetics》2003,35(3):221-228
Endogenous retroviruses have shaped the evolution of mammalian genomes. Host genes that control the effects of retrovirus insertions are therefore of great interest. The modifier-of-vibrator-1 locus (Mvb1) controls levels of correctly processed mRNA from genes mutated by endogenous retrovirus insertions into introns, including the Pitpn(vb) tremor mutation and the Eya1(BOR) model of human branchiootorenal syndrome. Positional complementation cloning identifies Mvb1 as the nuclear export factor Nxf1, providing an unexpected link between the mRNA export receptor and pre-mRNA processing. Population structure of the suppressive allele in wild Mus musculus castaneus suggests selective advantage. A congenic Mvb1(CAST) allele is a useful tool for modifying gene expression from existing mutations and could be used to manipulate engineered mutations containing retroviral elements. 相似文献
6.
In mammals, loss of APC/Apc gatekeeper function initiates intestinal tumorigenesis. Several different mechanisms have been shown or proposed to mediate functional loss of APC/Apc: mutation in APC/Apc, non-disjunction, homologous somatic recombination and epigenetic silencing. The demonstration that, in the C57BL/6 (B6) Apc(Min/+) mouse model of inherited intestinal cancer, loss of Apc function can occur by loss of heterozygosity (LOH) through somatic recombination between homologs presents an opportunity to search for polymorphisms in the homologous somatic recombination pathway. We report that the Robertsonian translocation Rb(7.18)9Lub (Rb9) suppresses the multiplicity of intestinal adenomas in this mouse model. As the copy number of Rb9 increases, the association with the interphase nucleolus of the rDNA repeats centromeric to the Apc locus on Chromosome 18 is increasingly disrupted. Our analysis shows that homologous somatic recombination is the principal pathway for LOH in adenomas in B6 Apc(Min/+) mice. These studies provide additional evidence that neoplastic growth can initiate in the complete absence of canonical genomic instability. 相似文献
7.
8.
Liu G Parant JM Lang G Chau P Chavez-Reyes A El-Naggar AK Multani A Chang S Lozano G 《Nature genetics》2004,36(1):63-68
The p53 protein integrates multiple upstream signals and functions as a tumor suppressor by activating distinct downstream genes. At the cellular level, p53 induces apoptosis, cell cycle arrest and senescence. A rare mutant form of p53 with the amino acid substitution R175P, found in human tumors, is completely defective in initiating apoptosis but still induces cell cycle arrest. To decipher the functional importance of these pathways in spontaneous tumorigenesis, we used homologous recombination to generate mice with mutant p53-R172P (the mouse equivalent of R175P in humans). Mice inheriting two copies of this mutation (Trp53(515C/515C)) escape the early onset of thymic lymphomas that characterize Trp53-null mice. At 7 months of age, 90% of Trp53-null mice had died, but 85% of Trp53(515C/515C) mice were alive and tumor-free, indicating that p53-dependent apoptosis was not required for suppression of early onset of spontaneous tumors. The lymphomas and sarcomas that eventually developed in Trp53(515C/515C) mice retained a diploid chromosome number, in sharp contrast to aneuploidy observed in tumors and cells from Trp53-null mice. The ability of mutant p53-R172P to induce a partial cell cycle arrest and retain chromosome stability are crucial for suppression of early onset tumorigenesis. 相似文献
9.
Deficiency of hyccin, a newly identified membrane protein, causes hypomyelination and congenital cataract 总被引:1,自引:0,他引:1
Zara F Biancheri R Bruno C Bordo L Assereto S Gazzerro E Sotgia F Wang XB Gianotti S Stringara S Pedemonte M Uziel G Rossi A Schenone A Tortori-Donati P van der Knaap MS Lisanti MP Minetti C 《Nature genetics》2006,38(10):1111-1113
We describe a new autosomal recessive white matter disorder ('hypomyelination and congenital cataract') characterized by hypomyelination of the central and peripheral nervous system, progressive neurological impairment and congenital cataract. We identified mutations in five affected families, resulting in a deficiency of hyccin, a newly identified 521-amino acid membrane protein. Our study highlights the essential role of hyccin in central and peripheral myelination. 相似文献
10.
Aragonés J Schneider M Van Geyte K Fraisl P Dresselaers T Mazzone M Dirkx R Zacchigna S Lemieux H Jeoung NH Lambrechts D Bishop T Lafuste P Diez-Juan A Harten SK Van Noten P De Bock K Willam C Tjwa M Grosfeld A Navet R Moons L Vandendriessche T Deroose C Wijeyekoon B Nuyts J Jordan B Silasi-Mansat R Lupu F Dewerchin M Pugh C Salmon P Mortelmans L Gallez B Gorus F Buyse J Sluse F Harris RA Gnaiger E Hespel P Van Hecke P Schuit F Van Veldhoven P Ratcliffe P Baes M Maxwell P Carmeliet P 《Nature genetics》2008,40(2):170-180
HIF prolyl hydroxylases (PHD1-3) are oxygen sensors that regulate the stability of the hypoxia-inducible factors (HIFs) in an oxygen-dependent manner. Here, we show that loss of Phd1 lowers oxygen consumption in skeletal muscle by reprogramming glucose metabolism from oxidative to more anaerobic ATP production through activation of a Pparalpha pathway. This metabolic adaptation to oxygen conservation impairs oxidative muscle performance in healthy conditions, but it provides acute protection of myofibers against lethal ischemia. Hypoxia tolerance is not due to HIF-dependent angiogenesis, erythropoiesis or vasodilation, but rather to reduced generation of oxidative stress, which allows Phd1-deficient myofibers to preserve mitochondrial respiration. Hypoxia tolerance relies primarily on Hif-2alpha and was not observed in heterozygous Phd2-deficient or homozygous Phd3-deficient mice. Of medical importance, conditional knockdown of Phd1 also rapidly induces hypoxia tolerance. These findings delineate a new role of Phd1 in hypoxia tolerance and offer new treatment perspectives for disorders characterized by oxidative stress. 相似文献
11.
Deficiency of PORCN, a regulator of Wnt signaling, is associated with focal dermal hypoplasia 总被引:1,自引:0,他引:1
Grzeschik KH Bornholdt D Oeffner F König A del Carmen Boente M Enders H Fritz B Hertl M Grasshoff U Höfling K Oji V Paradisi M Schuchardt C Szalai Z Tadini G Traupe H Happle R 《Nature genetics》2007,39(7):833-835
Focal dermal hypoplasia (FDH) is an X-linked dominant multisystem birth defect affecting tissues of ectodermal and mesodermal origin. Using a stepwise approach of (i) genetic mapping of FDH, (ii) high-resolution comparative genome hybridization to seek deletions in candidate chromosome areas and (iii) point mutation analysis in candidate genes, we identified PORCN, encoding a putative O-acyltransferase and potentially crucial for cellular export of Wnt signaling proteins, as the gene mutated in FDH. The findings implicate FDH as a developmental disorder caused by a deficiency in PORCN. 相似文献
12.
Telomerase activation is a common feature of advanced human cancers and facilitates the malignant transformation of cultured human cells and in mice. These experimental observations are in accord with the presence of robust telomerase activity in more advanced stages of human colorectal carcinogenesis. However, the occurrence of colon carcinomas in telomerase RNA (Terc)-null, p53-mutant mice has revealed complex interactions between telomere dynamics, checkpoint responses and carcinogenesis. We therefore sought to determine whether telomere dysfunction exerts differential effects on cancer initiation versus progression of mouse and human intestinal neoplasia. In successive generations of ApcMin Terc-/- mice, progressive telomere dysfunction led to an increase in initiated lesions (microscopic adenomas), yet a significant decline in the multiplicity and size of macroscopic adenomas. That telomere dysfunction also contributes to human colorectal carcinogenesis is supported by the appearance of anaphase bridges (a correlate of telomere dysfunction) at the adenoma-early carcinoma transition, a transition recognized for marked chromosomal instability. Together, these data are consistent with a model in which telomere dysfunction promotes the chromosomal instability that drives early carcinogenesis, while telomerase activation restores genomic stability to a level permissive for tumor progression. We propose that early and transient telomere dysfunction is a major mechanism underlying chromosomal instability of human cancer. 相似文献
13.
The Escherichia coli gene recQ was identified as a RecF recombination pathway gene. The gene SGS1, encoding the only RecQ-like DNA helicase in Saccharomyces cerevisiae, was identified by mutations that suppress the top3 slow-growth phenotype. Relatively little is known about the function of Sgs1p because single mutations in SGS1 do not generally cause strong phenotypes. Mutations in genes encoding RecQ-like DNA helicases such as the Bloom and Werner syndrome genes, BLM and WRN, have been suggested to cause increased genome instability. But the exact DNA metabolic defect that might underlie such genome instability has remained unclear. To better understand the cellular role of the RecQ-like DNA helicases, sgs1 mutations were analyzed for their effect on genome rearrangements. Mutations in SGS1 increased the rate of accumulating gross chromosomal rearrangements (GCRs), including translocations and deletions containing extended regions of imperfect homology at their breakpoints. sgs1 mutations also increased the rate of recombination between DNA sequences that had 91% sequence homology. Epistasis analysis showed that Sgs1p is redundant with DNA mismatch repair (MMR) for suppressing GCRs and for suppressing recombination between divergent DNA sequences. This suggests that defects in the suppression of rearrangements involving divergent, repeated sequences may underlie the genome instability seen in BLM and WRN patients and in cancer cases associated with defects in these genes. 相似文献
14.
Bowman AB Lam YC Jafar-Nejad P Chen HK Richman R Samaco RC Fryer JD Kahle JJ Orr HT Zoghbi HY 《Nature genetics》2007,39(3):373-379
Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease caused by expansion of a glutamine tract in ataxin-1 (ATXN1). SCA1 pathogenesis studies support a model in which the expanded glutamine tract causes toxicity by modulating the normal activities of ATXN1. To explore native interactions that modify the toxicity of ATXN1, we generated a targeted duplication of the mouse ataxin-1-like (Atxn1l, also known as Boat) locus, a highly conserved paralog of SCA1, and tested the role of this protein in SCA1 pathology. Using a knock-in mouse model of SCA1 that recapitulates the selective neurodegeneration seen in affected individuals, we found that elevated Atxn1l levels suppress neuropathology by displacing mutant Atxn1 from its native complex with Capicua (CIC). Our results provide genetic evidence that the selective neuropathology of SCA1 arises from modulation of a core functional activity of ATXN1, and they underscore the importance of studying the paralogs of genes mutated in neurodegenerative diseases to gain insight into mechanisms of pathogenesis. 相似文献
15.
BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling 总被引:21,自引:0,他引:21
He XC Zhang J Tong WG Tawfik O Ross J Scoville DH Tian Q Zeng X He X Wiedemann LM Mishina Y Li L 《Nature genetics》2004,36(10):1117-1121
In humans, mutations in BMPR1A, SMAD4 and PTEN are responsible for juvenile polyposis syndrome, juvenile intestinal polyposis and Cowden disease, respectively. The development of polyposis is a common feature of these diseases, suggesting that there is an association between BMP and PTEN pathways. The mechanistic link between BMP and PTEN pathways and the related etiology of juvenile polyposis is unresolved. Here we show that conditional inactivation of Bmpr1a in mice disturbs homeostasis of intestinal epithelial regeneration with an expansion of the stem and progenitor cell populations, eventually leading to intestinal polyposis resembling human juvenile polyposis syndrome. We show that BMP signaling suppresses Wnt signaling to ensure a balanced control of stem cell self-renewal. Mechanistically, PTEN, through phosphatidylinosital-3 kinase-Akt, mediates the convergence of the BMP and Wnt pathways on control of beta-catenin. Thus, BMP signaling may control the duplication of intestinal stem cells, thereby preventing crypt fission and the subsequent increase in crypt number. 相似文献
16.
The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors 总被引:1,自引:0,他引:1
Pancreas development begins with the formation of buds at specific sites in the embryonic foregut endoderm. We used recombination-based lineage tracing in vivo to show that Ptf1a (also known as PTF1-p48) is expressed at these early stages in the progenitors of pancreatic ducts, exocrine and endocrine cells, rather than being an exocrine-specific gene as previously described. Moreover, inactivation of Ptf1a switches the character of pancreatic progenitors such that their progeny proliferate in and adopt the normal fates of duodenal epithelium, including its stem-cell compartment. Consistent with the proposal that Ptf1a supports the specification of precursors of all three pancreatic cell types, transgene-based expression of Pdx1, a gene essential to pancreas formation, from Ptf1a cis-regulatory sequences restores pancreas tissue to Pdx1-null mice that otherwise lack mature exocrine and endocrine cells because of an early arrest in organogenesis. These experiments provide evidence that Ptf1a expression is specifically connected to the acquisition of pancreatic fate by undifferentiated foregut endoderm. 相似文献
17.
Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16(Ink4a)-p19(Arf) pathway 总被引:1,自引:0,他引:1
Bulavin DV Phillips C Nannenga B Timofeev O Donehower LA Anderson CW Appella E Fornace AJ 《Nature genetics》2004,36(4):343-350
Modulation of tumor suppressor activities may provide new opportunities for cancer therapy. Here we show that disruption of the gene Ppm1d encoding Wip1 phosphatase activated the p53 and p16 (also called Ink4a)-p19 (also called ARF) pathways through p38 MAPK signaling and suppressed in vitro transformation of mouse embryo fibroblasts (MEFs) by oncogenes. Disruption of the gene Cdkn2a (encoding p16 and p19), but not of Trp53 (encoding p53), reconstituted cell transformation in Ppm1d-null MEFs. In vivo, deletion of Ppm1d in mice bearing mouse mammary tumor virus (MMTV) promoter-driven oncogenes Erbb2 (also called c-neu) or Hras1 impaired mammary carcinogenesis, whereas reduced expression of p16 and p19 by methylation-induced silencing or inactivation of p38 MAPK correlated with tumor appearance. We conclude that inactivation or depletion of the Wip1 phosphatase with resultant p38 MAPK activation suppresses tumor appearance by modulating the Cdkn2a tumor-suppressor locus. 相似文献
18.
Monsuur AJ de Bakker PI Alizadeh BZ Zhernakova A Bevova MR Strengman E Franke L van't Slot R van Belzen MJ Lavrijsen IC Diosdado B Daly MJ Mulder CJ Mearin ML Meijer JW Meijer GA van Oort E Wapenaar MC Koeleman BP Wijmenga C 《Nature genetics》2005,37(12):1341-1344
Celiac disease is probably the best-understood immune-related disorder. The disease presents in the small intestine and results from the interplay between multiple genes and gluten, the triggering environmental factor. Although HLA class II genes explain 40% of the heritable risk, non-HLA genes accounting for most of the familial clustering have not yet been identified. Here we report significant and replicable association (P = 2.1 x 10(-6)) to a common variant located in intron 28 of the gene myosin IXB (MYO9B), which encodes an unconventional myosin molecule that has a role in actin remodeling of epithelial enterocytes. Individuals homozygous with respect to the at-risk allele have a 2.3-times higher risk of celiac disease (P = 1.55 x 10(-5)). This result is suggestive of a primary impairment of the intestinal barrier in the etiology of celiac disease, which may explain why immunogenic gluten peptides are able to pass through the epithelial barrier. 相似文献
19.
Zenker M Mayerle J Lerch MM Tagariello A Zerres K Durie PR Beier M Hülskamp G Guzman C Rehder H Beemer FA Hamel B Vanlieferinghen P Gershoni-Baruch R Vieira MW Dumic M Auslender R Gil-da-Silva-Lopes VL Steinlicht S Rauh M Shalev SA Thiel C Ekici AB Winterpacht A Kwon YT Varshavsky A Reis A 《Nature genetics》2005,37(12):1345-1350
Johanson-Blizzard syndrome (OMIM 243800) is an autosomal recessive disorder that includes congenital exocrine pancreatic insufficiency, multiple malformations such as nasal wing aplasia, and frequent mental retardation. We mapped the disease-associated locus to chromosome 15q14-21.1 and identified mutations, mostly truncating ones, in the gene UBR1 in 12 unrelated families with Johanson-Blizzard syndrome. UBR1 encodes one of at least four functionally overlapping E3 ubiquitin ligases of the N-end rule pathway, a conserved proteolytic system whose substrates include proteins with destabilizing N-terminal residues. Pancreas of individuals with Johanson-Blizzard syndrome did not express UBR1 and had intrauterine-onset destructive pancreatitis. In addition, we found that Ubr1(-/-) mice, whose previously reported phenotypes include reduced weight and behavioral abnormalities, had an exocrine pancreatic insufficiency, with impaired stimulus-secretion coupling and increased susceptibility to pancreatic injury. Our findings indicate that deficiency of UBR1 perturbs the pancreas' acinar cells and other organs, presumably owing to metabolic stabilization of specific substrates of the N-end rule pathway. 相似文献
20.
Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes 总被引:1,自引:0,他引:1
Grant SF Thorleifsson G Reynisdottir I Benediktsson R Manolescu A Sainz J Helgason A Stefansson H Emilsson V Helgadottir A Styrkarsdottir U Magnusson KP Walters GB Palsdottir E Jonsdottir T Gudmundsdottir T Gylfason A Saemundsdottir J Wilensky RL Reilly MP Rader DJ Bagger Y Christiansen C Gudnason V Sigurdsson G Thorsteinsdottir U Gulcher JR Kong A Stefansson K 《Nature genetics》2006,38(3):320-323