共查询到20条相似文献,搜索用时 15 毫秒
1.
The control of cell division by tension or diffusion 总被引:7,自引:0,他引:7
2.
The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells 总被引:75,自引:0,他引:75
Several glycoproteins that control blood-cell production and function have been purified and sequenced. The four colony-stimulating factors interact in a complex way to regulate the differentiation and maturation of the granulocyte and macrophage lineages and have potential applications for the clinical manipulation of blood-cell production. 相似文献
3.
4.
5.
6.
THERE is currently much interest in the mechanism which controls the timing of cell division. Certain features of the control have been found to be common to a variety of eukaryotes. In particular, the importance of cell size as a parameter affecting cell cycle progress has been reported for mammalian cells(1,2) and for several single-celled eukaryotes(3-6). Another feature common to several systems is that growth conditions have a direct effect on the timing of division cycle events(7-9), and on cell size(9,10). In the fission yeast Schizosaccharomyces pombe, both cell size(6) and nutritional conditions(9) have been shown to affect cycle kinetics. The organism has been used extensively as a model eukaryotic system, largely because of the ease of measuring cell size and because division occurs by binary fission(11). More recently, its genetic tractability has led to the isolation of cell division cycle (cdc) mutants(12), and also of wee mutants altered in the control coordinating growth with the division cycle(13-15). The existence of such control mutants allows a more direct approach to the investigation of the molecular basis of division control, in contrast to the indirect methods used in other systems(4,16-18). wee mutants are so far unique to S. pombe. The most conspicuous property of wee mutants is their reduced cell size(13,14). Analysis of these mutants(15,19) and other evidence(9) has shown that control over cell division timing normally acts at entry to mitosis. As the function of a number of cdc genes is specifically required for mitosis(12), interactions between wee and cdc mutants which affect mitosis might be expected. I report here that the mitotic defect caused by a defective cdc25 allele is suppressed in wee mutants. Suppression by wee1 mutants is almost complete, while the wee2.1 mutation is a less effective suppressor. The significance of these findings for genetic models of the control of mitosis is considered. 相似文献
7.
Primary structure homology between the product of yeast cell division control gene CDC28 and vertebrate oncogenes 总被引:74,自引:0,他引:74
In the budding yeast, Saccharomyces cerevisiae, division is controlled in response to nutrient limitation and in preparation for conjugation. Cells deprived of an essential nutrient or responding to mating pheromones cease division and become synchronous in the G1 interval, apparently constrained from completing a critical event. This event has been given the operational designation of 'start'. We have isolated a large number of start mutations which confer on S. cerevisiae cells a conditional inability to complete start (Fig. 1) presumably because they define genes which must be expressed for the start event to be successfully completed. We have described the isolation on plasmids of one of the start genes, CDC28, by genetic complementation and initial characterization of its product. We now describe the DNA sequence of the gene CDC28. 相似文献
8.
通过对相平面分区控制的机理进行分析,为降低系统参数整定难度,提出了控制器的一种改进措施,引入两段相平面分区控制方法.其次,给出了控制力K0′的确定方法以及两段相平面分区控制器参数整定原则,并对系统稳定性进行了分析.最后,通过高阶系统仿真示例,分析了两段相平面分区控制系统中的第一控制器参数、第二控制器参数、作用时间这三类控制参数对系统性能的影响.仿真结果表明,该方法能较好的兼顾系统的动态、稳态特性,并具有较好的抗干扰能力. 相似文献
9.
Canman JC Cameron LA Maddox PS Straight A Tirnauer JS Mitchison TJ Fang G Kapoor TM Salmon ED 《Nature》2003,424(6952):1074-1078
Proper positioning of the cell division plane during mitosis is essential for determining the size and position of the two daughter cells--a critical step during development and cell differentiation. A bipolar microtubule array has been proposed to be a minimum requirement for furrow positioning in mammalian cells, with furrows forming at the site of microtubule plus-end overlap between the spindle poles. Observations in other species have suggested, however, that this may not be true. Here we show, by inducing mammalian tissue cells with monopolar spindles to enter anaphase, that furrow formation in cultured mammalian cells does not require a bipolar spindle. Unexpectedly, cytokinesis occurs at high frequency in monopolar cells. Division always occurs at a cortical position distal to the chromosomes. Analysis of microtubules during cytokinesis in cells with monopolar and bipolar spindles shows that a subpopulation of stable microtubules extends past chromosomes and binds to the cell cortex at the site of furrow formation. Our data are consistent with a model in which chromosomes supply microtubules with factors that promote microtubule stability and furrowing. 相似文献
10.
A cell-surface component of molecular weight 43,000 is cleaved by thrombin on cells that divide after thrombin treatment, but is not cleaved on cells that are unresponsive to its mitogenic action. Studies with a photoreactive derivative of thrombin showed that its cell surface receptor has a molecular weight of 43,000. This indicates that thrombin must cleave its receptor to stimulate cell division. 相似文献
11.
Mizuguchi S Uyama T Kitagawa H Nomura KH Dejima K Gengyo-Ando K Mitani S Sugahara K Nomura K 《Nature》2003,423(6938):443-448
Glycosaminoglycans such as heparan sulphate and chondroitin sulphate are extracellular sugar chains involved in intercellular signalling. Disruptions of genes encoding enzymes that mediate glycosaminoglycan biosynthesis have severe consequences in Drosophila and mice. Mutations in the Drosophila gene sugarless, which encodes a UDP-glucose dehydrogenase, impairs developmental signalling through the Wnt family member Wingless, and signalling by the fibroblast growth factor and Hedgehog pathways. Heparan sulphate is involved in these pathways, but little is known about the involvement of chondroitin. Undersulphated and oversulphated chondroitin sulphate chains have been implicated in other biological processes, however, including adhesion of erythrocytes infected with malaria parasite to human placenta and regulation of neural development. To investigate chondroitin functions, we cloned a chondroitin synthase homologue of Caenorhabditis elegans and depleted expression of its product by RNA-mediated interference and deletion mutagenesis. Here we report that blocking chondroitin synthesis results in cytokinesis defects in early embryogenesis. Reversion of cytokinesis is often observed in chondroitin-depleted embryos, and cell division eventually stops, resulting in early embryonic death. Our findings show that chondroitin is required for embryonic cytokinesis and cell division. 相似文献
12.
Trypsin immobilised on polystyrene beads causes initiation of cell division which cannot be accounted for by trypsin released into the medium or into the cells. Also, initiation by soluble trypsin is inhibited by immobilised soybean trypsin inhibitor. These results demonstrate that trypsin can initiate proliferation at the cell surface. 相似文献
13.
Stomata consist of a pair of guard cells that mediate gas and water-vapour exchange between plants and the atmosphere. Stomatal precursor cells-meristemoids-possess a transient stem-cell-like property and undergo several rounds of asymmetric divisions before further differentiation. Here we report that the Arabidopsis thaliana basic helix-loop-helix (bHLH) protein MUTE is a key switch for meristemoid fate transition. In the absence of MUTE, meristemoids abort after excessive asymmetric divisions and fail to differentiate stomata. Constitutive overexpression of MUTE directs the entire epidermis to adopt guard cell identity. MUTE has two paralogues: FAMA, a regulator of guard cell morphogenesis, and SPEECHLESS (SPCH). We show that SPCH directs the first asymmetric division that initiates stomatal lineage. Together, SPCH, MUTE and FAMA bHLH proteins control stomatal development at three consecutive steps: initiation, meristemoid differentiation and guard cell morphogenesis. Our findings highlight the roles of closely related bHLHs in cell type differentiation in plants and animals. 相似文献
14.
Environmental and genetic aberrations lead to neural tube closure defects (NTDs) in 1 out of every 1,000 births. Mouse and frog models for these birth defects have indicated that Van Gogh-like 2 (Vangl2, also known as Strabismus) and other components of planar cell polarity (PCP) signalling might control neurulation by promoting the convergence of neural progenitors to the midline. Here we show a novel role for PCP signalling during neurulation in zebrafish. We demonstrate that non-canonical Wnt/PCP signalling polarizes neural progenitors along the anteroposterior axis. This polarity is transiently lost during cell division in the neural keel but is re-established as daughter cells reintegrate into the neuroepithelium. Loss of zebrafish Vangl2 (in trilobite mutants) abolishes the polarization of neural keel cells, disrupts re-intercalation of daughter cells into the neuroepithelium, and results in ectopic neural progenitor accumulations and NTDs. Remarkably, blocking cell division leads to rescue of trilobite neural tube morphogenesis despite persistent defects in convergence and extension. These results reveal a function for PCP signalling in coupling cell division and morphogenesis at neurulation and indicate a previously unrecognized mechanism that might underlie NTDs. 相似文献
15.
Oriented cell division is an integral part of pattern development in processes ranging from asymmetric segregation of cell-fate determinants to the shaping of tissues. Despite proposals that it has an important function in tissue elongation, the mechanisms regulating division orientation have been little studied outside of the invertebrates Caenorhabditis elegans and Drosophila melanogaster. Here, we have analysed mitotic divisions during zebrafish gastrulation using in vivo confocal imaging and found that cells in dorsal tissues preferentially divide along the animal-vegetal axis of the embryo. Establishment of this animal-vegetal polarity requires the Wnt pathway components Silberblick/Wnt11, Dishevelled and Strabismus. Our findings demonstrate an important role for non-canonical Wnt signalling in oriented cell division during zebrafish gastrulation, and indicate that oriented cell division is a driving force for axis elongation. Furthermore, we propose that non-canonical Wnt signalling has a conserved role in vertebrate axis elongation, orienting both cell intercalation and mitotic division. 相似文献
16.
Bacterial sporulation as a modified procaryotic cell division 总被引:22,自引:0,他引:22
17.
Asymmetric division of adult stem cells generates one self-renewing stem cell and one differentiating cell, thereby maintaining tissue homeostasis. A decline in stem cell function has been proposed to contribute to tissue ageing, although the underlying mechanism is poorly understood. Here we show that changes in the stem cell orientation with respect to the niche during ageing contribute to the decline in spermatogenesis in the male germ line of Drosophila. Throughout the cell cycle, centrosomes in germline stem cells (GSCs) are oriented within their niche and this ensures asymmetric division. We found that GSCs containing misoriented centrosomes accumulate with age and that these GSCs are arrested or delayed in the cell cycle. The cell cycle arrest is transient, and GSCs appear to re-enter the cell cycle on correction of centrosome orientation. On the basis of these findings, we propose that cell cycle arrest associated with centrosome misorientation functions as a mechanism to ensure asymmetric stem cell division, and that the inability of stem cells to maintain correct orientation during ageing contributes to the decline in spermatogenesis. We also show that some of the misoriented GSCs probably originate from dedifferentiation of spermatogonia. 相似文献
18.
Tawk M Araya C Lyons DA Reugels AM Girdler GC Bayley PR Hyde DR Tada M Clarke JD 《Nature》2007,446(7137):797-800
The development of cell polarity is an essential prerequisite for tissue morphogenesis during embryogenesis, particularly in the development of epithelia. In addition, oriented cell division can have a powerful influence on tissue morphogenesis. Here we identify a novel mode of polarized cell division that generates pairs of neural progenitors with mirror-symmetric polarity in the developing zebrafish neural tube and has dramatic consequences for the organization of embryonic tissue. We show that during neural rod formation the polarity protein Pard3 is localized to the cleavage furrow of dividing progenitors, and then mirror-symmetrically inherited by the two daughter cells. This allows the daughter cells to integrate into opposite sides of the developing neural tube. Furthermore, these mirror-symmetric divisions have powerful morphogenetic influence: when forced to occur in ectopic locations during neurulation, they orchestrate the development of mirror-image pattern formation and the consequent generation of ectopic neural tubes. 相似文献
19.
20.
Caulobacter flagellin mRNA segregates asymmetrically at cell division 总被引:13,自引:0,他引:13
Molecular processes which promote the spatial localization of subcellular components are fundamental to cell development and differentiation. At various stages in development unequal segregation of molecular information must occur to result in the differentiated characteristics which distinguish cell progeny. Biological attributes of the dimorphic bacterium, Caulobacter crescentus, provide an experimental system permitting examination of the generation of asymmetry at the molecular level. When a Caulobacter cell divides, two different daughter cells are produced--a motile swarmer cell with a polar flagellum and a non-motile cell with a static appendage referred to as a stalk. The two cell types are distinct with respect to surface morphology, developmental potential, protein composition and biosynthetic capabilities. One of the more conspicuous manifestations of asymmetric expression of macromolecules in this system, the flagellum, has been studied extensively. We have cloned the flagellin genes of Caulobacter and report here the use of these sequences as probes to demonstrate that (1) the level of flagellin mRNA is regulated during the cell cycle in a pattern coincident with flagellum polypeptide synthesis and (2) flagellin mRNA synthesized before cell division is segregated with progeny swarmer cells. This provides molecular evidence of specific partitioning of an mRNA at the time of cell division. 相似文献