首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
在有效质量近似下,利用变分原理研究了有限高应变GaN/AlxGa1-xN柱形量子点中杂质态的结合能,计算了结合能随量子点高度、半径和杂质位置的变化,讨论了应变对结合能的影响.数值计算表明,杂质态结合能随量子点半径的增大而减小,随量子点高度的增加将先增大到一极大值然后减小.当杂质位置在量子点中心时杂质态的结合能最大,且Al组分的增加使杂质态的结合能增大.研究还指出内建电场使得杂质态的结合能明显降低.  相似文献   

2.
InxGa1-xN/GaN应变量子点中激子的结合能   总被引:2,自引:0,他引:2  
利用有效质量方法和变分原理,考虑内建电场效应和量子点的三维约束效应,研究了InxGa1-xN/GaN应变量子点中的激子结合能随量子点结构参数和量子点中In含量x的变化规律.结果表明,随着量子点高度L和半径R的增加,结合能降低,随着量子点中In含量的增加,激子的结合能增大.对给定体积的量子点,激子结合能存在一最大值,此时电子、空穴被最有效的约束在量子点内.对不同体积的量子点,最大值的位置在量子点高度L=1.7nm附近取得.  相似文献   

3.
利用有效质量方法和变分原理,考虑内建电场效应和量子点(QD)的三维约束效应,研究类氢杂质对GaN/AlxGa1-xN量子点中激子态的影响.结果表明:量子点中心的类氢杂质使激子的结合能升高,基态能降低,QD系统的稳定性增强,发光波长红移.杂质位于量子点上界面时,激子的基态能最小,结合能最大,系统最稳定.随着杂质从量子点的上界面沿着Z轴移至下界面,激子基态能增大,结合能减小,带间发光蓝移.  相似文献   

4.
在有效质量近似框架内,运用变分方法,考虑内建电场效应和量子点的三维约束效应,研究了含类氢杂质的G aN/A lxG a1-xN量子点中的激子态.结果表明:量子点中心的类氢杂质使激子的基态能降低,结合能升高,Q D系统的稳定性增强,光跃迁能减小;杂质位于量子点上界面时,激子的基态能最小,结合能最大,系统最稳定;随着杂质从量子点的上界面沿着z轴移至下界面,激子基态能和光跃迁能增大,结合能减小.  相似文献   

5.
Ⅲ族氮化物量子点中类氢杂质态结合能   总被引:1,自引:0,他引:1  
在有效质量近似下,运用变分方法,考虑内建电场(BEF)效应和量子点的三维约束效应,研究了纤锌矿结构的GaN/Al,Ga1-xN,InxGa1-xN/CaN柱形量子点中类氢杂质态结合能随量子点的结构参数(量子点高度L和量子点半径尺)、Al或In含量和类氢杂质位置的变化规律,并计算了考虑量子点内外电子有效质量不同后对杂质态结合能的修正.结果表明:类氢杂质位于量子点中心时,杂质态结合能随量子点高度、半径的增加先增大后减小,存在最大值.对GaN/Al;Ga1-xN量子点,随着Al含量的增加,杂质态结合能增大;杂质从量子点下界面沿z轴上移至上界面过程中,结合能存在最大值.对InxGa1-xN/GaN量子点,随着In含量的增加,结合能先缓慢增大后缓慢减小,存在最大值;杂质从量子点下界面沿z轴移至上界面过程中,杂质态结合能增大.量子点内外电子有效质量的失配使杂质态结合能增大。  相似文献   

6.
在有效质量近似下,采用有限差分法研究了InGaN/GaN/InGaN/GaN球形核壳量子点中类氢杂质基态和激发态的结合能,数值计算了杂质态结合能随量子点核半径、壳层厚度和阱宽的变化关系。结果表明,核半径和阱宽对杂质态结合能的影响显著,随着核半径的增加,结合能先减小后增大,而后递减且逐渐趋于单量子点的结合能;而随着阱宽的增加,基态和激发态的结合能均单调减小,最后趋于同一定值。同时发现,壳层厚度达到一定值后,结合能不再发生变化。  相似文献   

7.
在考虑内建电场效应和量子点(QD)的三维约束效应的情况下,运用变分方法研究了类氢施主杂质的位置对Ⅲ族氮化物量子点中束缚激子态的影响.结果表明:当类氢施主杂质位于量子点中心,InxGa1-xN/GaN量子点的高度和In含量大于临界值时,约束在QD中激子的基态能降低,激子态的稳定性增强,在较高的温度下观察到半导体量子点吸收谱中的激子峰,发光波长增大.而类氢施主杂质总是使束缚在GaN/AlxGa1-xN量子点中激子的基态能降低,杂质可能使在更高温度下观察到GaN/AlxGa1-xN量子点中的激子,发光波长增大.研究发现类氢施主杂质位于量子点上界面时,激子的基态能最小,系统最稳定;随着施主杂质下移,激子基态能增加,激子的解离温度下降,发光波长减小.  相似文献   

8.
在有效质量近似下,运用变分方法,考虑内建电场效应和量子点(QD)的三维约束效应的情况下,研究了类氢施主杂质在量子点中的位置对Ⅲ族氮化物量子点中束缚激子结合能的影响。结果表明:当类氢施主杂质位于量子点中心时,对于InxGa1-xN/GaN量子点,量子点高度和In含量存在临界值,当参数大于临界值时,约束在QD中束缚激子的结合能升高,激子态的稳定性增强,提高了激子的离解温度,使人们能在较高的温度条件下观察到半导体量子点吸收谱中的激子峰。而类氢施主杂质总是使束缚在GaN/AlxGa1-xN量子点中激子的结合能升高,载流子被更强的约束在量子点中。说明对GaN/AlxGa1-xN量子点,杂质使人们能在更高温度下观察到量子点中的激子。类氢施主杂质位于量子点上界面时,束缚激子的结合能最大,系统最稳定;随着施主杂质下移,激子结合能减小,激子的离解温度下降。  相似文献   

9.
在有效质量近似下,利用变分法研究无限高势垒GaN/AlxGa1-xN应变长方量子点中类氢杂质态结合能及流体静压力效应,数值计算表明,杂质态结台能随量子点尺寸的增大而减少,但随流体静压力的增大而增加.此外,比较了考虑和不考虑应变时杂质态的结合能,结果发现在量子点长度较小的情况下,考虑应变后的结合能比不考虑应变后的高,而在量子点长度较大的情况下则相反.  相似文献   

10.
在有效质量近似下,运用变分方法,考虑内建电场效应和量子点(QD)的三维约束效应的情况下,研究了类氢施主杂质在量子点中的位置对III族氮化物量子点中束缚激子结合能的影响。结果表明:当类氢施主杂质位于量子点中心时,对于InxGa1-xN/GaN量子点,量子点高度和In含量存在临界值,当参数大于临界值时,约束在QD中束缚激子的结合能升高,激子态的稳定性增强,提高了激子的离解温度,使人们能在较高的温度条件下观察到半导体量子点吸收谱中的激子峰。而类氢施主杂质总是使束缚在GaN/A lxGa1-xN量子点中激子的结合能升高,载流子被更强的约束在量子点中。说明对GaN/A lxGa1-xN量子点,杂质使人们能在更高温度下观察到量子点中的激子。类氢施主杂质位于量子点上界面时,束缚激子的结合能最大,系统最稳定;随着施主杂质下移,激子结合能减小,激子的离解温度下降。  相似文献   

11.
在考虑内建电场效应和量子点(QD)的三维约束效应的情况下,运用变分方法研究了类氢施主杂质的位置对Ⅲ族氮化物量子点中束缚激子态的影响.结果表明:当类氢施主杂质位于量子点中心,InxGa1-xN/GaN量子点的高度和In含量大于临界值时,约束在QD中激子的基态能降低,激子态的稳定性增强,在较高的温度下观察到半导体量子点吸收谱中的激子峰,发光波长增大.而类氢施主杂质总是使束缚在GaN/AlxGa1-xN量子点中激子的基态能降低,杂质可能使在更高温度下观察到GaN/AlxGa1-xN量子点中的激子,发光波长增大.研究发现类氢施主杂质位于量子点上界面时,激子的基态能最小,系统最稳定;随着施主杂质下移,激子基态能增加,激子的解离温度下降,发光波长减小.  相似文献   

12.
在有效质量近似下,采用变分方法,研究椭球量子点中施主杂质的非线性光学性质.基于计算能量和波函数,以典型的半导体材料砷化镓为例,讨论椭球量子点的几何尺寸和各向异性度对施主杂质的三阶非线性极化率的影响.结果显示这些因素对椭球量子点中施主杂质的非线性光学性质有强烈的影响.  相似文献   

13.
计入流体静压力效应,同时考虑量子阱中三类光学声子模(局域类体光学声子、半空间类体光学声子和界面光学声子模)对单电子基态能量的影响,采用变分法讨论GaAs/AlxGa1-xAs量子阱中自由极化子的结合能.得到了压力下三类光学声子模对极化子结合能影响随阱宽的变化关系.结果表明:极化子结合能随外加压力增加.  相似文献   

14.
利用有效质量方法和变分原理,考虑内建电场效应和量子点(QD)的三维约束效应,研究类氢杂质对GaN/AlxGa1-xN量子点中激子态的影响.结果表明:量子点中心的类氢杂质使激子的结合能升高,基态能降低,QD系统的稳定性增强,发光波长红移.杂质位于量子点上界面时,激子的基态能最小,结合能最大,系统最稳定.随着杂质从量子点的上界面沿着Z轴移至下界面,激子基态能增大,结合能减小,带间发光蓝移.  相似文献   

15.
利用精确对角化方法,研究了抛物势双层量子点中带负电荷激子的1S态和3P态的关联能与量子点的束缚势大小的变化关系,以及1S态对应几个不同的量子点间点与点的距离的束缚能随束缚势大小的变化关系,计算了电子与空穴质量比为σ=0.677和σ=0.197的缚能随束缚势大小的变化关系.  相似文献   

16.
磁场对正方体量子点中类氢杂质束缚能的影响   总被引:4,自引:0,他引:4  
利用有效质量近似,计算了磁场影响下正方体量子点中类氢杂质体系的束缚能,与相同条件下量子线以及球形量子点的束缚能进行了比较,得出合理的结果;并对其物理意义进行了分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号