共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
讨论由林华新引进的一种C~*-代数的正元的比较理论.以算子理论的方法详细讨论原始定义中所包含的具体信息,得到这种比较理论的等价定义,并给出常用的基本性质和初步的结果.最后讨论了与通常投影比较的异同以及给出对单C~*-代数的一种描述. 相似文献
3.
4.
5.
在迹极限的意义下, 特别是在单代数的条件下, 研究某些C*-代数性质的封闭性.假设A=(t2)limn -> ∞ (An,pn), An上至少有一个迹态或An,具有(SP) 性质,则A也有相同的结果;假设A=(t3)limn -> ∞ (An,pn),并且A是单代数,如果\TR(An)=0,tsr(An)=1和An具有投影消去律,则A也有相同的结果. 相似文献
6.
7.
0→J→A→B→0是一个拟对角扩张.证明以下结论:(1)如果J和B具有弱可比性质,则A也具有弱可比性质;(2)如果J和B具有强消去性质,则A也具有强消去性质;(3)如果J和B具有n-无孔性质,则A也具有n-无孔性质. 相似文献
8.
《华东师范大学学报(自然科学版)》2016,(2)
交换C*-代数有许多特征。在本文中,证明了C*-代数A是非交换的当且仅当其包络冯诺依曼代数A中有一个C*-子代数B,B*-同构于2阶矩阵代数M_2(C).基于这个性质,又可以得到一些旧命题的新证明方法. 相似文献
9.
具有迹实秩零的C*-代数(英) 总被引:1,自引:0,他引:1
引入具有迹实秩零的C*-代数,并证明了具有迹实秩零的C*-代数与AF-代数的张量积仍是迹实秩零的,具有迹实秩零的单C*-代数是实秩零的. 相似文献
10.
疯狂动力系统的拓扑熵 总被引:3,自引:0,他引:3
考察了底空间为ΣN×S1的疯狂动力系统的拓扑熵, 确定其范围为lg N~2lg N; 并给出当纤维映射中含有旋转映射时该系统拓扑熵的范围. 相似文献
11.
研究拓扑动力系统(X,f)的拓扑熵ent^*(f)和它诱导的超空间拓扑动力系统(K(X),f^-)拓扑熵ent^*(f)之间的关系。利用拓扑熵ent^*(f)的性质,以拓扑动力系统与它诱导的超空间拓扑动力系统之间的关系为切入点。得出了拓扑动力系统(X,f)的拓扑熵不大于它诱导的超空间拓扑动力系统(K(X),f^-)的拓扑熵;当拓扑动力系统(X,f)的拓扑熵大于0时,超空间拓扑动力系统(K(X),f^-)的拓扑熵为∞。ent^*(f)具有Adler拓扑熵和Bowen拓扑熵的一般性质。 相似文献
12.
测度空间的拓扑序列熵 总被引:1,自引:0,他引:1
给定一个拓扑动力系统(X,T),记M(X)为X上Borel概率测度的全体,其上的拓扑由弱拓扑所诱导.如果系统(X,T)具有零拓扑序列熵,则它称为拓扑-null的.对于给定的一个伪度量空间以及其上的一个自映射(不必连续),引入并研究沿着给定序列的拓扑熵,包括由空间上连续实值函数所诱导的伪度量.作为应用可以证明,给定一个序列A包含于Z+,如果X为零维的,那么,系统(X,T)沿着A具有零拓扑熵当且仅当(M(X),T)沿着A具有零拓扑熵.特别的,当X为一个零维空间时,系统(X,T)为拓扑-null的当且仅当(M(X),T)为拓扑-null的. 相似文献
13.
讨论了交换C^*-代数C(Ω)上矩阵的谱与广义谱,给出了A∈Mn(C(Ω)的谱σ(A)与相应的A(ω)∈Mn(C)的谱σ(A(ω))的一个关系。引入了A∈Mn(C(Ω))的广义谱σg(A),讨论它的一些性质,证明了σg(A)是C(Ω)中的一个闭集,并且一般是无界的。 相似文献
14.
研究了HilbertC*-模和JB*-tripes的关系,我们证明了:(1)C*-代数上的每个Hilbert模等距同构于算子JB*-triple;(2)交换JB*-triple必定是某一C*-代数上HilbertC*-模。 相似文献
15.
16.
陈建威 《云南师范大学学报(自然科学版)》2001,21(2):14-17
文章构造一个拓扑熵为+∞的系统,证明了拓扑熵映射ent(f)在一致性收敛诱导的拓扑空间:г={f|f∈C^0(I),f:I→I不变,f有常斜率λ>1;↓Aλ∈R }。上是连续的,且存在不可为数映射集合г0属于г,↓Af∈г0,有ent(f)= ∞。 相似文献
17.
张传林 《暨南大学学报(自然科学与医学版)》2000,21(3):21-28
研究一致空间上连续变换的拓扑熵的性质和紧一致空间上扩张同胚拓扑熵的计算问题,证明Bowen给出的度量空间的连续变换的拓 熵由其度量诱导的一致结构决定;对于可一致化的紧拓扑空间上的连续变换Adler、Konheim、McAndrew及Bowen定义的拓扑熵相同;变换是扩张变换等价于其有生成子;紧一致空间上扩张同胚的拓扑熵由其生成了或扩张常数决定。 相似文献
18.
关于拓扑序列熵的一点注记 总被引:1,自引:1,他引:0
当(X,f)是紧系统时,拓扑熵满足性质:en t(fm)=m.ent(f),对于由递增的正整数序列A={ai}i∞=1所确定的en tA(f)的拓扑序列熵不完全具有此类性质。它的性质和A的结构有着直接的关系。 相似文献
19.
讨论了Hilbert空间上的C^*-代数A中的可逆群和酉群的一些关系,证明了C^*-代数A中的元素A是可逆的充要条件是存在两个非负实数λ1和λ2,且λ1≠λ2以及酉群中的两个元素U1和U2使得A=λ1U1 λ2U2,给出了λ代数A中范数不大于1的可逆元的全体闭包和酉群的一些关系。 相似文献