共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
针对传统二叉树在多分类问题上存在分类精度不够高和时间复杂度较高的不足,提出了一种基于二叉树结构双优化的SVM多分类学习算法。此算法利用遗传算法对已经提取的特征参数子集和核参数进行双重优化,以获得最优的主要特征参数,从而有效地解决了样本结构复杂、分布不平坦的多分类识别问题。作者运用UCI数据库中的数据,通过仿真实验,并就经度和时间复杂度与有向无环图法和一对一法作比较,结果表明本文提出的算法具有较好的优越性。 相似文献
3.
行人重识别任务旨在跨相机下检索出特定的行人图像.虽然行人重识别任务得到了快速发展,在检索精度上得到很大的提升,但是依然面临着行人重识别模型在新的数据集上泛化能力有限,以及在无监督领域自适应任务中无法避免的伪标签噪声的问题.针对目前无监督领域自适应任务中由于聚类算法的局限性而导致伪标签出现噪声的问题,提出一种基于多度量融合的无监督领域自适应行人重识别算法.具体而言,多度量融合算法是在目标域上使用DBSCAN(density-based spatial clustering of applications with noise)聚类算法对特征空间的行人特征进行聚类时,通过多个特征相似度度量函数线性加权的方式,计算行人之间的特征相似度,从而在目标域上生成更为准确的伪标签,之后利用该伪标签微调模型.通过在Market1501→DukeMTMC-reID和DukeMTMC-reID→Market1501上大量的实验,证明多度量融合算法有效提升了行人重识别模型在无监督领域自适应任务上的检索精度. 相似文献
4.
用于文本分类的快速KNN算法 总被引:1,自引:0,他引:1
KNN(k Nearest Neighbor)算法是一种简单、有效、非参数的文本分类方法.传统的KNN方法有着样本相似度计算量大的明显缺陷,使其在具有大量高维样本的文本分类中缺乏实用性.提出了一种快速查找精确的k个最近邻的TKNN(Tree-k-Nearest-Neighbor)算法,该算法建立一棵用于查找的树,加速k个最近邻的查找.首先以整个样本集合中心为基准,按照距离中心的距离将所有样本进行排序,并等分L组,作为根结点的孩子,每个孩子以同样方式处理,直到每组样本数量在[k,2k]间为止.根据这棵树查找k个最近邻,减小了查找范围,极大地降低了相似度计算量. 相似文献
5.
基于相似方向的二叉树支持向量机多类分类算法 总被引:4,自引:0,他引:4
介绍了几种常用的支持向量机多类分类方法,指出了各自优点和不足之处.在现有的基于二叉树的支持向量机多类分类算法的基础上,提出了一种新的以类间相似方向作为二叉树支持向量机(BT-SVM)生成算法的多类分类方法,实例分析表明该方法具有较高的精度和推广能力. 相似文献
6.
分类算法是数据挖掘中最重要的研究领域之一。通过对当前数据挖掘中具有代表性的优秀分类算法进行分析和比较,给出了每种算法的特性,为使用者选择算法或研究者改进算法提供了依据。 相似文献
7.
魏明哲 《山西师范大学学报:自然科学版》2014,(3):26-29
通过分析基于隐马尔可夫模型(HMM)语音识别的原理,针对模板提取过程中语音信号的基音频率差别增大而出现的语音识别率下降的问题,提出分类识别的方法,通过采用基音周期(Pitch)判决方法,将特征相近的帧合并,并计算基音频率的MEL频率倒谱系数,采用隐马尔可夫模型(HMM)进行语音识别,最终通过仿真实验验证分类识别方法对语音识别率提高的影响,得出此方法的适用环境和范围. 相似文献
8.
在行人重识别模型中引入邻域数据关系,提出了一种基于图像邻域相似度的重排序方法。首先扩充图像的邻域数据,然后计算图像对不同邻域数据的相似度权重,利用该权重得到代表邻域相似度的分布距离,再用分布距离与原始距离计算得出最终距离作为重排序评判标准。使用CCL,Transreid, Torchreid等行人重识别模型在Market-1501,DukeMTMC-reID数据集上进行实验,结果表明本文方法对基准模型的精度提升均超过该领域的主流算法,证实了本文方法的有效性和泛化性。该重排序方法不需要任何人工交互和额外数据,适用于大规模数据集,可以有效应用于图像检索、目标跟踪等需要考虑相似度关系的任务中。 相似文献
9.
准确、高效的业务流识别与分类是保障多媒体通信端到端QoS(Quality of Service)、执行相关网络操作的前提.但多媒体通信业务构成复杂、具有较严格的QoS约束,且在包/流水平统计特征多样性,业务统计特征有效选取直接关系到识别和分类方法的有效性.在介绍相关研究成果的基础上,文中从业务特征角度对现有技术进行分类,进而对比各类方法的性能,同时在探讨当前业务流识别方法存在对新业务识别准确度不高、实时性不足等问题的基础上,结合跨域QoS类映射弹性需求的特点,给出跨域QoS类映射中多媒体业务识别架构.整个架构的目标是准确、高效地识别多媒体流,为聚集流的形成做好前期准备,为保障高效的端到端QoS提供技术支撑.最后,总结了发展趋势和面临的挑战. 相似文献
10.
《西安石油大学学报(自然科学版)》2017,(4):123-126
分类算法主要存在问题:(1)无法充分利用样本的分布特征;(2)无法保持样本的相对关系不变;(3)无法解决大规模分类问题。对此,提出了一种基于最大散度差的保序分类算法RPCM,该方法利用线性判别分析算法中的类间离散度和类内离散度来表征样本的分布特征,通过保持各类样本中心相对关系不变来实现样本相对关系不变。理论分析表明:RPCM的对偶形式与最小包含球等价。在核心向量机的基础上提出了RPCM-CVM算法,该算法可用来解决大规模分类问题,标准数据集上的比较实验验证了所提方法的有效性。 相似文献
11.
合成孔径雷达有着观测范围广和分辨率高的特点,可以全天候工作,并能有效地识别伪装和穿透掩盖物,但也存在雷达图像数据量大且目标电磁散射特征复杂等特点,为目标的识别引入了噪声和干扰,因此发展快速和智能化的SAR图像目标识别技术得到越来越多的关注.本文针对美国空军研究实验室SAR图像中的8个目标物引入3种机器学习算法和一些数据处理方法构建了相关的识别模型,并对其识别能力进行对比分析,结果显示这3种机器学习算法通过优化算法都可以获得较高的识别准确率(> 80%),尤其是KNN算法的测试集准确率都可以高达97%.本文研究结果可为SAR目标识别的人工智能化技术提供一些方法上的参考和指导. 相似文献
12.
为解决情感分类中词间的语义关系难以表达和分析的问题,提出了一种基于词向量(word representation)和支持向量机(support vector machine)的情感分类算法,对电子商务在线评论的情感分类问题进行研究.首先使用word2vec聚类相似特征,然后使用word2vec和SVM对情感数据进行训练和分类,并分别使用基于词特征和基于词性标注的方法进行特征选择.在京东评论数据上进行的实验结果表明,与现有方法相比,分类准确率和召回率得到了提高. 相似文献
13.
宣艳 《中国新技术新产品精选》2014,(19):189-190
设备的安全运行对保证安全生产具有非常重要的作用,不仅关系到设备自身的安全,还关系到广大人民群众的生命和财产安全。通过分析设备风险管理的危险源分类,并充分利用各种有效的安全监管资源,提高设备安全管理的针对性与有效性。由此可见,关于设备风险管理的危险源分类及辨识至关重要。文章分析了关于设备风险管理的危险源分类,探析了辨识设备危险源的方法以及步骤,以供参考。 相似文献
14.
针对神经网络存在的过学习、欠学习、局部极小值等问题,提出了一种基于支持向量机(SVM)的数字调制方式的识别方法。从信号的瞬时幅度,瞬时相位,瞬时频率,频谱,包络变化等特性中提取了7个特征参数,用于训练支持向量机。运用二叉树理论设计多类分类器,与已有算法相比,具有简单、高速、高精度的特点。仿真结果证明,在高斯白噪声(AWGN)下,当信噪比大于15dB时,对2ASK、4ASK、8ASK、2FSK、4FSK、8FSK、BPSK、QPSK、8PSK调制方式的识别率可以达到97% 以上。 相似文献
15.
《云南民族大学学报(自然科学版)》2017,(6):492-496
空间分类既要考虑待分类对象的非空间属性,还要考虑其空间邻接对象非空间属性对分类的影响.提出一种基于多关系的朴素贝叶斯空间分类算法,算法将多关系分类方法用于空间分类,考虑了不同近邻对象的非空间属性对分类产生的影响,其分类准确率高于单关系朴素贝叶斯空间分类算法.算法可以用于空间数据库中的大数据集,不需要复杂的数据预处理. 相似文献
16.
多类SVM分类算法的研究 总被引:3,自引:0,他引:3
支持向量机(Support Vector Machine,SVM)是上世纪九十年代提出的一种基于小样本的新的统计学习方法,较好地解决了非线性、高维数、局部极小点等实际问题.文中分析了SVM基础理论并总结了目前存在的基于支持向量机的主要分类方法,包括"一对多"方法、"一对一"方法、决策有向无环图方法、基于二又树的多类分类方法和其它方法,并对各自的优缺点及性能做了比较. 相似文献
17.
提出了一种有效的快速k近邻分类文本分类算法,即PSOKNN算法,该算法利用粒子群优化方法的随机搜索能力在训练文档集中进行有指导的全局随机搜索. 在搜索k近邻的过程中,粒子群跳跃式移动,掠过大量不可能成为k近邻的文档向量,从而可以快速找到测试样本的k个近邻. 以Reuters 21578文档集分类为例验证算法的有效性,结果表明,保持k近邻法分类精度,新算法比KNN算法降低分类时间70%. 相似文献
18.
终端智能识别是物联网应用的关键技术,是物联网安全体系构建的基础。针对物联网终端智能识别问题,建立了一种以设备指纹为动态特征标识的物联网终端智能识别实验系统。该系统由终端检测模块、模型训练模块以及智能识别模块构成,其中,终端检测模块利用Nmap工具扫描并自动采集设备指纹;模型训练模块分别利用决策树、逻辑回归与朴素贝叶斯等机器学习算法训练分类器;智能识别模块接收识别任务并调用前2模块完成设备指纹采集与分类识别处理。实验结果表明,决策树分类器在整体数据集上的平均识别率为98.1%,对于是否是物联网设备的判断识别率为98.7%,对于具体设备类型的识别率为98.2%,均保持较高识别水准,且优于其余2种算法识别器。因此,采用设备指纹与决策树算法结合识别物联网设备是可行的。 相似文献
19.
提出了基于K-means的二阶段多类SVM分类方法.该方法分为二个阶段:第一阶段采用K-means聚类,通过抽样精度来提高聚类准确度;第二阶段采用LIBSVM进行分类.通过使用LIBSVM提供的语料进行实验,结果显示比直接使用LIBSVM进行分类准确度提高了9.35%. 相似文献
20.
基于多关系的空间分类算法研究 总被引:1,自引:0,他引:1
空间数据挖掘的应用领域很广,空间分类是空间数据挖掘中一项重要的任务,现有的空间分类算法都是基于传统的方法,在单表上进行的.本文提出了一种新的空间分类算法,基于多关系的方法创建决策树,并验证了算法的正确性及有效性. 相似文献