首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用催化剂直接涂膜(CCM)方法制备膜电极(MEA),研究阴极和阳极催化层中使用不同催化剂活性组分担载量对膜电极性能的影响。采用电化学阻抗谱(EIS)分析MEA的电化学特性。研究结果表明:阳极催化层中,随着Ir担载量的增加,在相同电流密度条件下,电解池的极化电压下降,当Ir担载量增加到2.5 mg/cm~2以上,极化电压趋于稳定;阴极催化层中,随着Pt担载量的增加,在相同电流密度条件下,电解池的极化电压下降,当Pt担载量增加到0.5 mg/cm~2以上,极化电压下降不明显,趋于稳定。随着电极催化层活性组分担载量的增加,MEA的欧姆阻抗R?和电荷传递阻抗RCT的减小。对于阴极催化层,当Pt/C催化层的催化剂担载量过多时,由于传质和电荷传递阻力显著增加,导致MEA的R?和RCT增大。阳极催化层Ir的最佳担载量为2.5 mg/cm~2,阴极催化层Pt的最佳担载量为0.5 mg/cm~2。  相似文献   

2.
采用电解氯化法制备Ag/AgCl参比电极,结合铂丝辅助电极及毛细玻璃管制作微区电化学测试用毛细管微电极,借助电化学测试及微观形貌分析研究了不同电解工艺参数及毛细管管口口径对微电极性能的影响。结果表明,随着电解极化电流密度、极化时间、电解液浓度的增加,所制备的Ag/AgCl参比电极稳定性先增加后降低,在浓度为0.25mol/L的HCl溶液中以3.2mA/cm~2的极化电流密度极化30min时,所制Ag/AgCl参比电极稳定性最佳;将微电极的毛细管管口口径控制在50~110μm时,可保证较高的微区电化学测试成功率。  相似文献   

3.
电渗析法制备硅溶胶过程中阳离子膜浓差极化行为的研究   总被引:2,自引:0,他引:2  
首先给出了阳离子交换膜浓差极化物理模型 ,然后利用该模型分析了电渗析制备硅溶胶过程中Um -J曲线的特性 ,阐明了利用Um -J曲线确定浓差极化电流密度的理论依据 ,阐述了Um -J曲线上两个拐点的理化本质 ,其中的拐点 2所对应的电流密度是在该实验条件下(XSiO2 =4% ,θ=5 0℃ ,cNa+=0 1 1 89mol·L-1)的极限电流密度 ,并根据Jlim 和cNa+的关系 ,计算出电渗析法制备硅溶胶过程中的膜边界层厚度δ为 7 6 8× 1 0 -6m ,同时得出了电渗析装置应在极限电流密度下运行这一结论。  相似文献   

4.
本文研究了西门子/NGK公司的NOx传感器及电极极化对传感器剩余氧气的浓度的影响,结果表明,第二个空腔内的氧气敏感电极的极化是导致产生18 ppm浓度NOx的主要原因,与V1=385 mV所显示的数值相比,这是高得多的剩余氧气的浓度,即氧气测量电极的极化是决定剩余氧气浓度大小的主要因素。  相似文献   

5.
为应对碘硫循环制氢工艺中浓缩 HI 的要求,采用石墨、活性炭纤维布为电极,Nation117CS 为质子交换膜构成电解渗析(EED)池,对Bunsen反应 Hix相的模拟溶液进行了HI 的 EED浓缩实验.实验结果表明,EED操作能够对 HI 起到有效的浓缩作用.在所考察的 2.5~20.0 A/dm2 电流密度范围内未发生浓差极化,随电流密度的提高,阴极液 HI 浓缩速率逐渐增大.在连续运行实验中,当电流密度为 20.0 A/dm2 时,对初始m(HI)为 8.8 mol/kg 的 HH-H2O-I2溶液进行2 h 的 EED处理,即可使m(HI)超越恒沸点.采用石墨电极时的浓缩效果优于采用活性炭纤维布,但采用后者时EED槽电压明显低于前者,可使EED操作能耗有效降低.提高操作温度会使HI的浓缩效率下降,但可显著降低槽电压.  相似文献   

6.
为了实现纳滤纯化低聚壳聚糖制备液技术的工业化,对纳滤过程中膜污染的形成进行研究,分析了电解质浓度对纳滤膜吸附层污染的影响和纳滤运行中的能量分布情况以及吸附层对电解质截留率的影响。结果发现,膜面吸附层污染与浓差极化存在复杂的交互影响。运行初期传质过程主要受浓差极化控制,低聚壳聚糖在膜面吸附形成的浓流层使浓差极化进一步加剧;随着低聚壳聚糖在膜面累积数量的增大,传质过程逐渐转变为吸附层结构和浓差极化共同控制。膜面吸附层的形成分为浓流层和致密层两个阶段,其中致密层是造成纳滤膜脱盐和操作性能恶化的主要原因,在操作过程中应及时控制和减缓该层的形成。  相似文献   

7.
针对锂离子电池内部浓差极化及其影响因素,对典型的NCM/C系锂离子电池进行试验获得关键性能参数,利用COMSOL软件建立电化学模型并试验验证其准确性,基于模型开展电池放电过程中固、液相浓差极化特性及其主要因素对电池放电性能影响的仿真研究.结果表明:电池在放电过程中,单独改变负极粒径对负极固相浓差极化的影响更加明显,等比变化范围内负极引起的固相浓差变化幅度约是正极的136.05%;改变正极厚度更易加剧液相浓差极化,等量变化范围内正极引起的液相浓差变化幅度约是负极的199.01%;正极厚度对电压平台和电池容量影响显著,负极粒径影响电压平台而对容量几乎无影响;相比两者,正极厚度是同时影响电池浓差极化和放电性能的关键因素.  相似文献   

8.
以炼油厂含油污水为介质,对新组装的一台外压列管式膜组件分离装置的分离透过性能及浓差极化进行了研究。结果表明,以超滤法处理含油污水时,透过速率的控制因素是凝胶层。对列管式膜组件,在壳程加折流板可以大大减少浓差极化的影响,一米长的膜管以设4块折流板为宜。得出了加折流板的膜组件能量与雷诺准数之间的关系式及其常数可由实验确定。  相似文献   

9.
硫酸铵溶液中钛阳极氧化膜的椭园法研究   总被引:1,自引:0,他引:1  
本文用椭圆法、TEM和XPS研究了恒电流条件下形成的钛阳极氧化膜,讨论了0~20V(SCE)范围内模的生长、组成和膜的击穿。实验结果表明膜为单层,膜的生长速率在0.02、0.05、0.1、1、2.5mA/cm~2时分别为2.65、2.5、2.5、2.2、2.0nm/V。求得膜的密度为3.19/cm~3,膜组成为TiO_2(H_2O)_(0.9)。发现在实验的极化电流密度范围内膜的击穿电位与电流密度的对数式正比。  相似文献   

10.
本文采用连续脉冲技术和电位扫描法研究了铂阳极上的过电压和反应机理,实验发现,在电流密度0.078~1.5A/cm~2的范围内过电压与电流密度的关系符合Tafel方程:η=0.22+0.21lgi (Ⅴ)此结果与Thonstad所观察的结果比较一致,但与Drassbach的数据相距较远,在实验的基础上,讨论了反应的控制步骤和反应历程,认为过电压由活化极化所引起,反应按复合脱附历程进行: 上述结论由残余电动势法和电位扫描法进一步证明,在实验中还观察到在铂阳极上也可以发生阳极效应,这在文献中还未见报道,但是铂阳极上的临界电流密度相当高,当氧化铝浓度饱和时为60A/cm~2。  相似文献   

11.
为设计和筛选高性能贮氢合金,对影响氢化物电极放电过程的因素进行理论研究,根据氢化物电极的结构及放电过程,推导出多孔氢化物电极的极化方程.实验结果表明,在制备氢化物电极时,应注意选择贮氢合金颗粒尺寸和填充密度来增大单位体积反应层中的反应表面积和缩短氢扩散距离,以降低氢浓差极化程度;注意添加催化剂,降低电化学极化程度;并添加导电剂,以降低电极的电阻极化程度  相似文献   

12.
活化极化是由电极电化学反应造成的电压损失,对质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)的输出性能有重要影响.分析了PEMFC的工作原理和活化极化性能,建立了活化极化数学模型;同时针对6种不同阴极压力(30、40、50、60、70、80 kPa)下的PEMFC极...  相似文献   

13.
运用电化学技术,通过电极电位、耦合电流、交流阻抗图谱(EIS)测试分析,研究埋地保温管道破损点及远离破损点处的电化学腐蚀行为。结果表明:氧浓差导致破损点及远离破损点试样的电极电位出现明显差异,即破损点处电极电位较正,作为阴极,具有阴极保护效应,腐蚀速率仅为0.159 3 mm/a;远离破损点位置电极电位较负,作为阳极,具有接触腐蚀效应,腐蚀速率均高于破损点位置,最高为0.531 6 mm/a;受到模拟介质有效距离效应的影响,距离破损点最近位置试样的阳极电流密度最大,腐蚀最为严重;随着温度升高,阴极区与阳极区的电位差和耦合电流密度增大,远离破损点的阳极区腐蚀加剧。自腐蚀电位下T/S-52K管线钢的腐蚀具有阴极浓差极化控制为主的电极反应特征;防腐保温层破损后,破损点处具有明显O_2扩散控制的阴极反应特征,而远离破损点位置具有明显活化极化控制的阳极反应特征;距破损点距离越近,电荷转移电阻越低(其中2~#试样R_t仅为430.2Ω·cm~2),金属离子化趋势越强。  相似文献   

14.
为研究大容量蓄电储能全钒液流电池的充电能力,建立基于电池内部传递与反应相耦合的机理模型,模拟电池二维、等温、稳态、充电的状态,得到电池极化的比重数据,并从机理出发深入分析极化的主要来源.通过数值模拟碳毡电极电导率对电极过程的影响,给出反应区域的二维分布特点及规律.研究结果表明:欧姆极化约占总极化电压的50%,浓差极化约占30%,动力学极化占20%;反应区域的分布与多孔电极电导率及电解液电导率的相对大小有关,电流总是选择电阻较小的方式传导.  相似文献   

15.
用蓝色氧化钨和仲钨酸铵分别制取碳化钨。把碳化钨和聚四氟乙烯乳液、碳黑相混和,加工成防水型氢扩散多孔电极。测定了电极在4mol HCl/(kgH_2O)溶浓中的稳态极化曲线。发现超电位在8mV之间的弱极化区,超电位与总表观电流密度呈线性关系;在阳极极化中等程度的区域,有两条塔费尔直线。电位较高区塔费尔直线的斜率为电位较低区直线斜率的一倍。这结果与气体扩散电极的薄层平板模型理论推论相符合,从而阐明了电极在各电位区内极化的性质。X射线衍射照相证明,制得的碳化钨为α-WC,属六方晶系。  相似文献   

16.
探讨了CO2和SO2膜吸收过程中的传质机理,并建立了数学模型。采用正交配置法求解模型,模拟了不同类型反应的反应物和产物在膜器内的浓度分布。模拟结果表明:反应动力学的不同是造成浓差极化的主要原因,为进一步弄清膜吸收过程传质机理提供了参考。  相似文献   

17.
分别在中空纤维膜和平板膜中考察了L-赖氨酸超滤动力学,结果表明:中空纤维膜的过滤通量大于平板膜,总过滤时间正相反;L-赖氨酸超滤动力学可以拟合为浓差极化-凝胶层模型,中空纤维膜较平板膜更符合此模型。  相似文献   

18.
本文论述了浓差极化的理论计算方法,并利用带激光器的两光束干涉测试技术,测定了膜表面处边界层中溶质的浓度分布断面和浓差极化值,文中还论述了消除浓差极化的一些有效措施。  相似文献   

19.
质子交换膜燃料电池多孔介质中水的两相迁移   总被引:1,自引:0,他引:1  
在混合流动模型的基础上,建立了一个新的二维两相流模型来研究质子交换膜燃料电池内水分的传递规律和分布状态,在该模型中,催化剂层作为一个有厚度的实体包含在电极中.模型耦合了质子交换膜燃料电池电极中的流动方程.组分方程、催化剂层和质子交换膜中的电势和电流密度分布方程,可以应用在质子交换膜燃料电池的阴极,也可以使用在阳极.同时,模型还考虑了相变引起的液相和气相间的动量变化,重点模拟了水分在燃料电池的阴极、阳极和质子交换膜中的传递规律及其分布状态.模拟结果显示:升高加湿温度、提高电流密度和降低电池温度都会使电池质子膜中的水分含量增大,质子传导率升高,也会使阴极中液态水含量增加,阴极浓差极化加剧.  相似文献   

20.
为了研究空气扩散电极的结构对扣式锌空气电池性能的影响,采用辊压法制作了单层膜、三层膜和两种不同结构的双层膜分别作为扣式锌空气电池的空气电极;测试了空气电极的透气性、极化曲线;并测试了用各种膜电极制作的扣式锌空气电池的放电性能.研究结果表明,单层膜空气电极的透气性能最好,在相同的极化电位下的极化电流密度最大;三层膜空气电极防漏液性能相对最好;催化层与透气层直接接触的双层膜电极由于具有较好的透气性、放电电流密度较高、防漏性能好并延长了电极使用寿命,因而由其装配所得的扣式锌空气电池具有最长的放电时间和最高的平均工作电压.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号