首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
CaO-Al2O3-SiO2 (CAS) glass-ceramics were prepared via a melting method using naturally cooled yellow phosphorus furnace slag as the main raw material. The effects of the addition of Fe2O3 on the crystallization behavior and properties of the prepared glass-ceramics were studied by differential thermal analysis, X-ray diffraction, and scanning electron microscopy. The crystallization activation energy was calculated using the modified Johnson-Mehl-Avrami equation. The results show that the intrinsic nucleating agent in the yellow phosphorus furnace slag could effectively promote the crystallization of CAS. The crystallization activation energy first increased and then decreased with increasing amount of added Fe2O3. At 4wt% of added Fe2O3, the crystallization activation energy reached a maximum of 676.374 kJ·mol-1. The type of the main crystalline phase did not change with the amount of added Fe2O3. The primary and secondary crystalline phases were identified as wollastonite (CaSiO3) and hedenbergite (CaFe(Si2O6)), respectively.  相似文献   

2.
考察了铁酸钙熔体添加SiO2或Al2O3对赤铁矿渗透行为的影响.采用以铁酸钙为粘结相的烧结赤铁矿试样,考察在铁酸钙中添加SiO2或Al2O3对烧结试样抗折和抗压强度的影响.试验结果表明,添加SiO2和Al2O3抑制了铁酸钙熔体对赤铁矿的渗透行为.在1300℃,恒温20min条件下,在铁酸钙中添加质量分数为2%的SiO2的烧结赤铁矿有最大的抗折和抗压强度,这是由于添加了SiO2的铁酸钙具有较短的熔化时间和较好的渗透性,在烧结过程中充分形成流动性好的液相,提高了粘结相固结铁矿石颗粒的作用.  相似文献   

3.
The nozzle clogging behavior of Ti-bearing IF steel was studied by metallographic analysis, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). According to the experimental results, nozzle clogging primarily appears three layers. There are a lot of large-sized iron particles in the inner layer and mainly slag phase in the middle and outer layers. The principal clog constituents of the inner layer are loose alumina cluster inclusions and granular shaped alumina inclusions, containing iron particles. The clog constituents of the middle layer are mainly dendrite alumina inclusions. The primary phases existing in nozzle clogging are FeO·TiO2 and FeO·Al2O3 besides α-Al2O3 and α-Fe. The FeO·TiO2 phases among the deposits adhere the deposits together firmly enough to lead to the inferior castability of Ti-bearing ultra low carbon steel compared with that of Ti-free low carbon Al-killed steel.  相似文献   

4.
In this paper, the diffusion behavior between MgO and Fe2O3 (the main iron oxide in pellets) is investigated using a diffusion couple method. In addition, the distribution regulation of MgO in MgO-bearing pellets is analyzed via pelletizing experiments. The results illustrate that MgO is prone to diffuse into Fe2O3 in the form of solid solution; the diffusion rate considered here is 13.64 μm·min-1. Most MgO content distributes in the iron phase instead of the slag phase. The MF phase {(Mg1-x Fex)O·Fe2O3, x ≤ 1} is generated in the MgO-bearing pellets. However, the distribution of MgO in the radial direction of the pellets is inconsistent. The solid solution portion of MgO in the MF phase is larger in the outer layer of the pellets than in the inner layer. In this work, the approximate chemical composition of the MF phase in the outer layer of the pellets is {(Mg0.35-0.77·Fe0.65-0.23) O·Fe2O3} and in the inner layer is {(Mg0.13-0.45·Fe0.87-0.55) O·Fe2O3}.  相似文献   

5.
MgO对球团矿抗压强度的影响   总被引:5,自引:0,他引:5  
以经焙烧处理的菱镁石作为含MgO添加剂生产氧化球团,考察了MgO含量对氧化球团抗压强度的影响.研究表明:随着球团矿中MgO含量的增加,球团矿的抗压强度逐渐下降.其主要原因为:球团中MgO含量的增加使得球团中Fe3O4氧化成Fe2O3再结晶过程减弱,连晶不完全,且分布不均,不利于球团矿的固结;通过对不同MgO含量的球团矿的孔隙分布及孔隙度分析可知,随着球团矿中MgO含量的增加,球团矿的孔径及孔隙度逐渐增大,导致球团矿的抗压强度不断下降.  相似文献   

6.
Using coal fly ash slurry samples supplemented with different amounts of Al2O3, we fabricated mullite-based porous ceramics via a dipping-polymer-replica approach, which is a popular method suitable for industrial application. The microstructure, phase composition, and compressive strength of the sintered samples were investigated. Mullite was identified in all of the prepared materials by X-ray diffraction analysis. The microstructure and compressive strength were strongly influenced by the content of Al2O3. As the Al/Si mole ratio in the starting materials was increased from 0.84 to 2.40, the amount of amorphous phases in the sintered microstructure decreased and the compressive strength of the sintered samples increased. A further increase in the Al2O3 content resulted in a decrease in the compressive strength of the sintered samples. The mullite-based porous ceramic with an Al/Si molar ratio of 2.40 exhibited the highest compressive strength and the greatest shrinkage among the investigated samples prepared using coal fly ash as the main starting material.  相似文献   

7.
铁酸钙粘结相自身强度的研究   总被引:1,自引:0,他引:1  
以烧结矿中的铁酸钙粘结相为研究对象,考察了粘结相自身的抗折、抗压强度随粘结相组成的变化规律.实验考察了不同n(CaO)∶n(Fe2O3)(摩尔比)以及MgO,SiO2和Al2O3含量对铁酸钙粘结相的抗折、抗压强度的影响规律.结果表明,n(CaO):n(Fe2O3)=1∶2时,粘结相的抗折、抗压强度最高,添加MgO使粘结相抗折、抗压强度下降,适量的SiO2(w(SiO2)<3%)能提高粘结相的抗折、抗压强度,但随Al2O3含量的增加,粘结相的抗折、抗压强度下降.  相似文献   

8.
The effect of F, K, and Na on the solid phase reaction of the Baiyunebo iron ore was investigated by differential thermal analysis (DTA) and X-ray diffraction (XRD). It has been identified that alkaline elements K and Na in the Baiyunebo ore instigate the formation of low melting point compounds Na2SiO3 and Na2O·Fe2O3 and the generation of molten state in the solid phase sintering. Element F in the Baiyunebo ore facilitates the formation of cuspidine compound 3CaO·2SiO2·CaF2 in the solid phase reaction. The cuspidine compound is kept in solid as one of the final products through the entire sintering process due to its high melting point. In the sintering process, CaF2 and SiO2 react with CaO first and form 3CaO·2SiO2·CaF2 and 3CaO·2SiO2, so the formation of ferrites, Na2O·Fe2O3, and 2CaO·Fe2O3 is inhibited.  相似文献   

9.
通过四因素三水平正交试验,研究了在不同水胶比(W/C)下,复掺玄武岩纤维(BF)、纳米二氧化硅(NS)、氧化铝粉(Al2O3)3种功能材料对水泥砂浆物理与力学性能的影响。结果表明,掺0.1%BF的试样7 d、28 d的抗压强度分别提高了3.6%、8.26%,抗折强度分别提高了3%、10.8%;掺1.0%NS的试样7 d、28 d的抗压强度分别提高了5.8%、8.03%,抗折强度分别提高了6.3%、10.1%;掺5%Al2O3的试样7 d、28 d的抗压强度分别提高了15.2%、10.32%,抗折强度分别提高了19%、13.5%。抗压强度最优配比为W/C 0.35、Al2O3 5%、BF 0.1%、NS 1.0%,为制备风机设备基础混凝土高性能抹面砂浆提供参考。  相似文献   

10.
In this work, network former SiO2 and network intermediate Al2O3 were introduced into typical low-melting binary compositions CaO·B2O3, CaO·2B2O3, and BaO·B2O3 via an aqueous solid-state suspension milling route. Accordingly, multiple-phase aluminosilicate glass-ceramics were directly obtained via liquid-phase sintering at temperatures below 950℃. On the basis of liquid-phase sintering theory, mineral-phase evolutions and glass-phase formations were systematically investigated in a wide MO-SiO2-Al2O3-B2O3 (M=Ca, Ba) composition range. The results indicate that major mineral phases of the aluminosilicate glass-ceramics are Al20B4O36, CaAl2Si2O8, and BaAl2Si2O8 and that the glass-ceramic materials are characterized by dense microstructures and excellent dielectric properties.  相似文献   

11.
Typical O??-sialon-based ceramics, with a formula of Si2?x Al x O1+x N2?x , where x was set as 0.25, were fabricated by in-situ synthesis. Si3N4, Al2O3, and SiO2 powders were used as raw materials, and MgO and Y2O3 were added as sintering additives. All the samples were sintered at different temperatures under a nitrogen pressure of 0.25?C0.30 MPa, and their microstructure, phase content, and thermal conductivity were evaluated. The effects of O??-sialon and ??-Si3N4 on the thermal conductivity were analyzed by numerical calculation in detail. In the case of the similar porosity, the thermal conductivity of O??-sialon-based ceramics decreased with the ratio of O??-sialon/??-Si3N4 increasing. When the ratio was 12, the thermal conductivity of O??-sialon ceramics sintered at 1360°C was 1.197 W·m?1·K?1.  相似文献   

12.
The modification of MgO·Al2O3 spinel inclusions in Al-killed steel by Ca-treatment has been studied by industrial trials and thermodynamic calculations. In the industrial trials, samples were taken systematically during the refining process in which the molten steel was treated by calcium, and the characters of the inclusions were analyzed using scanning electron microscopy (SEM) and energy dispersive spectra (EDS). The effects of Ca-treatment were evaluated by tracking the compositions of the inclusions. The results show that the modification of MgO·Al2O3 spinel inclusions by Ca-treatment is effective and the transformation sequence of the inclusions during the refining is Al2O3→MgO·Al2O3→liquid complex inclusions. The modification of spinel inclusions by Ca-treatment was calculated by FactSage6.0 utilizing its free-energy minimization routines. The results of thermodynamic calculations indicate that spinel inclusions are easier to be modified than Al2O3 inclusions and the spinel inclusions in 30CrMo steel would transform to liquid complex inclusions when the content of dissolved Ca in the molten steel exceeds 1×10−6. Also, the results show that adding more calcium into the molten steel would lower the contents of Al2O3 and MgO and increase the CaO content of the inclusions, while the change in SiO2 content is little.  相似文献   

13.
The fabrication of an alumina-metal composite coating onto a carbon steel substrate by using a self-propagating high-temperature synthesis technique was demonstrated. The effects of the type and thickness of the pre-coated layer on the binding structure and surface quality of the coating were systematically investigated. The macrostructure, phase composition, and bonding interface between the coating and the substrate were investigated by scanning electronic microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectrometry (EDS). The diffraction patterns indicated that the coating essentially consisted of α-Al2O3, Fe(Cr), and FeO·Al2O3. With an increase in the thickness of the pre-coated working layer, the coating became more smooth and compact. The transition layer played an important role in enhancing the binding between the coating and the substrate. When the pre-coated working layer was 10 mm and the pre-coated transition layer was 1 mm, a compact structure and metallurgical bonding with the substrate were obtained. Thermal shock test results indicated that the ceramic coating exhibited good thermal shock resistance when the sample was rapidly quenched from 800°C to room temperature by plunging into water.  相似文献   

14.
Brazing of quartz fiber reinforced silica composites (QFSC) to Invar alloy was carried out in a vacuum at 1173 K for 10 min using Ag-21Cu-4.5Ti metal filler.Experiments indicated that composites prefilled with CaCO3 micrograins had good wettability.The CaCO3 decomposed to CaO during brazing.After brazing,a joint of structure QFSC/3CaO·2SiO2+Ti3O5+Fe2Ti+NiTi+Ag(s,s)+ Cu(s,s)/Invar was established.The shear strength of the brazed joint reached 11.6 MPa at room temperature,which is about five times the shear strength of that obtained without surface filling.  相似文献   

15.
The effects of different additives on the mechanical properties, microstructures, and wear behavior of corundum abrasives were investigated. When the number of additive phases increases, the sintering temperature and wear rate decrease, while the densification and mechanical properties increase. The additive SiO2 is responsible for the development of equiaxed grains, whereas both CaO and MgO promote the development of platelike grains. By controlling the molar ratio of additives, it is possible to obtain different microstructures. With SiO2-MgO-CaO (molar ratio, 2:1:1) as the additives and nano α-Al2O3 powders as the seed, microcrystalline corundum abrasives with hexagonal platelets were obtained using sol-gel process by sintering at 1300℃ for 0.5 h. The average diameter and thickness of hexagonal platelets are 1.38 μm and 360 nm respectively, the single-particle compressive strength is 26.44 N, and the wear rate is (3.06±0.21)×10?7 mm3/(N·m).  相似文献   

16.
Na_2CO_3促进复杂难选铁矿石深度还原的机理分析   总被引:1,自引:0,他引:1  
以羚羊铁矿石为原料,在1 200℃下深度还原40 min,通过外配Na2CO3的方法研究了Na2CO3对羚羊铁矿石深度还原的影响,并从热力学角度探讨了Na2CO3促进深度还原的机理.结果表明,铁橄榄石(2FeO.SiO2)、铁尖晶石(FeO.Al2O3)等复杂化合物的生成是影响还原物料金属化率和铁粉品位的一个重要因素.配入的Na2CO3分解产生的Na2O可以置换铁复杂化合物中的FeO;同时和矿石中的SiO2和Al2O3反应,进而有效减少了与FeO反应的SiO2和Al2O3的量,从而提高了还原物料的金属化率及铁粉品位.  相似文献   

17.
The Sarcheshmeh copper flotation circuit is producing 5×104 t copper concentrate per month with an averaging grade of 28% Cu in rougher, cleaner and recleaner stages. In recent years, with the increase in the open pit depth, the content of aluminosilicate minerals increased in plant feed and subsequently in flotation concentrate. It can motivate some problems, such as unwanted consumption of reagents, decreasing of the copper concentrate grade, increasing of Al2O3 and SiO2 in the copper concentrate, and needing a higher temperature in the smelting process. The evaluation of the composite samples related to the most critical working period of the plant shows that quartz, illite, biotite, chlorite, orthoclase, albeit, muscovite, and kaolinite are the major Al2O3 and SiO2 beating minerals that accompany chalcopyrite, chalcocite, and covellite minerals in the plant feed. The severe alteration to clay minerals was a general rule in all thin sections that were prepared from the plant feed. Sieve analysis of the flotation concentrate shows that Al2O3 and SiO2 bearing minerals in the flotation concentrate can be decreased by promoting the size reduction from 53 to 38 μm. Interlocking of the Al2O3 and SiO2 bearing minerals with chalcopyrite and chalcocite is the occurrence mechanism of silicate and aluminosilicate minerals in the flotation concentrate. The dispersed form of interlocking is predominant.  相似文献   

18.
The equilibrium reaction between CaO—Al2O3—SiO2—MgO slag and 28MnCr5 molten steel was calculated to obtain the suitable slag composition which is effective for decreasing the oxygen content in molten steel. The dissolved oxygen content [O] in molten steel under different top slag conditions was calculated using a thermodynamic model and was measured using an electromotive force method in slag–steel equilibrium experiments at 1873 K. The relations among [O], the total oxygen content (T.O), and the composition of the slag were investigated. The experimental results show that both [O] and T.O decrease with decreasing SiO2 content of the slag and exhibit different trends with the changes in the CaO/Al2O3 mass ratio of the slag. Increasing the CaO/Al2O3 mass ratio results in a decrease in [O] and an increase in T.O. To ensure that T.O ≤ 20 ppm and [O] ≤ 10 ppm, the SiO2 content should be controlled to <5wt%, and the CaO/Al2O3 mass ratio should be in the range from 1.2 to 1.6.  相似文献   

19.
The recovery of iron from the screw classifier overflow slimes by direct flotation was studied. The relative effectiveness of sodium silicates with different silica-to-soda mole ratios as depressants for silica and silicate bearing minerals was investigated. Silica-to-soda mole ratio and silicate dosage were found to have significant effect on the separation efficiency. The results show that an increase of Fe content in the concentrate is observed with concomitant reduction in SiO2 and Al2O3 levels when a particular type of sodium silicate at a proper dosage is used. The concentrate of 58.89wt% Fe, 4.68wt% SiO2, and 5.28wt% Al2O3 with the weight recovery of 38.74% and the metal recovery of 41.13% can be obtained from the iron ore slimes with 54.44wt% Fe, 6.72wt% SiO2, and 6.80wt% Al2O3, when Na2SiO3 with a silica-to-soda mole ratio of 2.19 is used as a depressant at a feed rate of 0.2 kg/t.  相似文献   

20.
随着优质铁矿资源的消耗,钢铁企业可利用的铁矿原料品位逐渐降低。因此,高铝质铁矿资源越来越受到钢铁企业的关注,但高铝原料在高炉冶炼过程中会带来渣铁黏稠、炉温偏低、冶炼安全等一系列问题。本研究中采用FactSage热力学软件分析Al2O3质量分数对高炉渣平衡物相、熔化温度、相析出温度的影响以及高铝渣液相区变化和黏度变化,旨在为高炉冶炼高铝原料提供一定的基础支撑。研究发现:炉渣为低铝(5%~10%)含量时,随着Al2O3含量增加,炉渣熔化温度升高,析出相为黄长石相和纯物质相,高炉渣黏度变化不大,炉渣中SiO2含量高,炉渣黏度过高,不适合高炉冶炼;炉渣为中铝(10%~15%)含量时,随着Al2O3含量增加,炉渣熔化温度升高,析出相为尖晶石相、黄长石相和纯物质相,高炉渣黏度增加幅度略有提高,Al2O3含量对高炉渣性质影响较小,增加炉渣二元碱度对炉渣黏度降低效果较明显;炉渣为高铝(15%~30%)含量时...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号