首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two crystal structures of the glucocorticoid receptor DNA-binding domain complexed with DNA are reported. The domain has a globular fold which contains two Zn-nucleated substructures of distinct conformation and function. When it binds DNA, the domain dimerizes, placing the subunits in adjacent major grooves. In one complex, the DNA has the symmetrical consensus target sequence; in the second, the central spacing between the target's half-sites is larger by one base pair. This results in one subunit interacting specifically with the consensus target half-site and the other nonspecifically with a noncognate element. The DNA-induced dimer fixes the separation of the subunits' recognition surfaces so that the spacing between the half-sites becomes a critical feature of the target sequence's identity.  相似文献   

2.
Bianco PR  Kowalczykowski SC 《Nature》2000,405(6784):368-372
DNA helicases are ubiquitous enzymes that unwind double-stranded DNA. They are a diverse group of proteins that move in a linear fashion along a one-dimensional polymer lattice--DNA--by using a mechanism that couples nucleoside triphosphate hydrolysis to both translocation and double-stranded DNA unwinding to produce separate strands of DNA. The RecBC enzyme is a processive DNA helicase that functions in homologous recombination in Escherichia coli; it unwinds up to 6,250 base pairs per binding event and hydrolyses slightly more than one ATP molecule per base pair unwound. Here we show, by using a series of gapped oligonucleotide substrates, that this enzyme translocates along only one strand of duplex DNA in the 3'-->5' direction. The translocating enzyme will traverse, or 'step' across, single-stranded DNA gaps in defined steps that are 23 (+/-2) nucleotides in length. This step is much larger than the amount of double-stranded DNA that can be unwound using the free energy derived from hydrolysis of one molecule of ATP, implying that translocation and DNA unwinding are separate events. We propose that the RecBC enzyme both translocates and unwinds by a quantized, two-step, inchworm-like mechanism that may have parallels for translocation by other linear motor proteins.  相似文献   

3.
分子量标准引物定位合成(Marker Primer-directed Synthesis,简称MPDS)乃一种DNA碱基对梯度片段的简易合成术。该方法用两套不同的引物进行靶DNA的PCR扩增。一套为范围引物,决定每一梯度片段的绝对长度;另一套为间隔引物,决定两个梯度片段之间的大小差异。用这种技术得到的梯度片段,可用作分析DNA片段大小的分子量标准。目前已用此方法成功地合成了90~204bp范围内以6bp为梯度的分子量标准,对在经溴乙锭或硝酸银染色的聚丙烯酰胺凝胶上进行微卫星的分型特别有用。  相似文献   

4.
为建立特异、敏感、快速的绵羊附红细胞体感染诊断方法,本试验根据已测得的绵羊附红细胞体16S rRNA基因序列(GeneBank:EU916726、FJ440328),设计1对特异性引物,建立了绵羊附红细胞体的PCR诊断方法。特异性实验和敏感性实验结果表明,该方法与绵羊肺炎支原体、大肠杆菌、葡萄球菌、白色念珠菌、枯草杆菌均无交叉反应,能检测到绵羊附红细胞体最低DNA量为5.2pg/μL.在-80℃存放1年的皿样中也检测到阳性样品。通过临床血样检测,证明该方法可以用于本病的早期感染和隐性感染的检测。  相似文献   

5.
T J Matray  E T Kool 《Nature》1999,399(6737):704-708
In most models of DNA replication, Watson-Crick hydrogen bonding drives the incorporation of nucleotides into the new strand of DNA and maintains the complementarity of bases with the template strand. Studies with nonpolar analogues of thymine and adenine, however, have shown that replication is still efficient in the absence of hydrogen bonds. The replication of base pairs might also be influenced by steric exclusion, whereby inserted nucleotides need to be the correct size and shape to fit the active site against a template base. A simple steric-exclusion model may not require Watson-Crick hydrogen bonding to explain the fidelity of replication, nor should canonical purine and pyrimidine shapes be necessary for enzymatic synthesis of a base pair if each can fit into the DNA double helix without steric strain. Here we test this idea by using a pyrene nucleoside triphosphate (dPTP) in which the fluorescent 'base' is nearly as large as an entire Watson-Crick base pair. We show that the non-hydrogen-bonding dPTP is efficiently and specifically inserted by DNA polymerases opposite sites that lack DNA bases. The efficiency of this process approaches that of a natural base pair and the specificity is 10(2)-10(4)-fold. We use these properties to sequence abasic lesions in DNA, which are a common form of DNA damage in vivo. In addition to their application in identifying such genetic lesions, our results show that neither hydrogen bonds nor purine and pyrimidine structures are required to form a base pair with high efficiency and selectivity. These findings confirm that steric complementarity is an important factor in the fidelity of DNA synthesis.  相似文献   

6.
Wang J 《Nature》2005,437(7057):E6-7; discussion E7
Human polymerase-iota belongs to the error-prone Y family of polymerases, which frequently incorporate incorrect nucleotides during DNA replication but can efficiently bypass DNA lesions. On the basis of X-ray diffraction data, Nair et al. propose that Hoogsteen base-pairing is adopted by DNA during its replication by this enzyme. Here I re-examine their X-ray data and find that the electron density is very weak for a Hoogsteen base pair formed between a template adenine deoxyribonucleotide in the syn conformation and a deoxythymidine 5'-triphosphate (dTTP), and that the fit is better for a normal Watson-Crick base pair. As a guanine-cytosine (G-C) base pair has no potential to form a Hoogsteen base pair at physiological pH, Hoogsteen base-pairing is unlikely to be used in replication by this polymerase.  相似文献   

7.
M Hogan  J LeGrange  B Austin 《Nature》1983,304(5928):752-754
We have used triplet anisotropy decay techniques to study the flexibility of synthetic DNA fragments with different base pair compositions. We have found major differences in the torsional and bending stiffness of poly(dG) . poly(dC), poly(dA) . poly(dT) and poly(dA-dC) . poly(dT-dG). Poly(dG) . poly(dC) has a torsional modulus more than 40 times larger than poly(dA-dC) . poly(dT-dG), and approximately 20 times larger than poly(dA) . poly(dT). These differences imply that the torsional stiffness of DNA can vary greatly with base composition. The Young's modulus (bending stiffness) we have measured for poly(dG) . poly(dC) is at least twice that of poly(dA-dC) . poly(dT-dG) or random sequence DNA, and is at least threefold greater than that of poly(dA) . poly(dT). This implies that the bending stiffness of DNA is also strongly dependent on base composition. In light of this dramatic base composition dependence, we suggest here that such stiffness variation may lead to local variations in the stability of chromatin or other protein complexes that require bending or twisting of the DNA helix.  相似文献   

8.
Human DNA polymerase eta (Pol eta) modulates susceptibility to skin cancer by promoting DNA synthesis past sunlight-induced cyclobutane pyrimidine dimers that escape nucleotide excision repair (NER). Here we have determined the efficiency and fidelity of dimer bypass. We show that Pol eta copies thymine dimers and the flanking bases with higher processivity than it copies undamaged DNA, and then switches to less processive synthesis. This ability of Pol eta to sense the dimer location as synthesis proceeds may facilitate polymerase switching before and after lesion bypass. Pol eta bypasses a dimer with low fidelity and with higher error rates at the 3' thymine than at the 5' thymine. A similar bias is seen with Sulfolobus solfataricus DNA polymerase 4, which forms a Watson-Crick base pair at the 3' thymine of a dimer but a Hoogsteen base pair at the 5' thymine (ref. 3). Ultraviolet-induced mutagenesis is also higher at the 3' base of dipyrimidine sequences. Thus, in normal people and particularly in individuals with NER-defective xeroderma pigmentosum who accumulate dimers, errors made by Pol eta during dimer bypass could contribute to mutagenesis and skin cancer.  相似文献   

9.
Random components in mutagenesis   总被引:18,自引:0,他引:18  
P L Foster  E Eisenstadt  J Cairns 《Nature》1982,299(5881):365-367
The mutability of DNA varies enormously from one base pair to another. Part of this variation is due to the specificity of the reaction between mutagens and base, but much of the variation is due to unknown causes. A genetic system developed by Miller and colleagues allows the mutation frequencies of a large number of different base pairs in the lacI gene of Escherichia coli to be compared. For example, Coulondre and Miller found that the sites most readily mutated by UV light are almost 100 times more often mutated than the least susceptible sites. A recently completed study of mutagenesis with neocarzinostatin (NCS) in the lacI gene has prompted us to re-examine some previous studies, of mutagenesis in this gene. Our analysis, reported here, suggests that the mutations induced by certain mutagens fall into two classes: mutations in one class are clearly distributed non-randomly, that is, they are very common at some sites and significantly less common at others; mutations in the second class, however, occur at low frequency and appear to be randomly distributed. Both classes of mutations seem to occur only at damaged bases.  相似文献   

10.
Crespo-Hernández CE  Cohen B  Kohler B 《Nature》2005,436(7054):1141-1144
Solar ultraviolet light creates excited electronic states in DNA that can decay to mutagenic photoproducts. This vulnerability is compensated for in all organisms by enzymatic repair of photodamaged DNA. As repair is energetically costly, DNA is intrinsically photostable. Single bases eliminate electronic energy non-radiatively on a subpicosecond timescale, but base stacking and base pairing mediate the decay of excess electronic energy in the double helix in poorly understood ways. In the past, considerable attention has been paid to excited base pairs. Recent reports have suggested that light-triggered motion of a proton in one of the hydrogen bonds of an isolated base pair initiates non-radiative decay to the electronic ground state. Here we show that vertical base stacking, and not base pairing, determines the fate of excited singlet electronic states in single- and double-stranded oligonucleotides composed of adenine (A) and thymine (T) bases. Intrastrand excimer states with lifetimes of 50-150 ps are formed in high yields whenever A is stacked with itself or with T. Excimers limit excitation energy to one strand at a time in the B-form double helix, enabling repair using the undamaged strand as a template.  相似文献   

11.
12.
13.
 根据GenBank中同类蛋白序列设计特异PCR引物,从2株创伤弧菌Vibrio vulnificus和1株河弧菌Vibrio fluvialis中扩增出热休克蛋 白70(heat shock protein, hsp70)基因片段。对这3个片段进行克隆、测序和分析的结果表明,3个片段长均为1 911 bp,包含完整的 hsp70 ORF,编码636个氨基酸。它们的氨基酸序列与GenBank中其它物种hsp70的氨基酸序列比较发现,2株创伤弧菌hsp70基因序列 和同种其它菌株的同源性高,达98%以上;而河弧菌的hsp70序列属首次克隆;与多种原核和真核生物的hsp70氨基酸序列一起构建 了系统进化树,结果支持传统的分类结果。  相似文献   

14.
The di-region theory put forward by Dai Qianhuan, a molecular mechanism of chemical carcinogenesis, concluded that the carcinogenesis induced by most of the environmental carcinogens is switched on by the cross-linking between DNA complementary bases aroused by the bifunctional alkylation of their metabolic intermediates. It was evidenced in this paper with DNA filter elution method that one carcinogenic mycotoxin, aflatoxin G1, four carcinogenic N-nitroso compounds, N-nitrosodiethyl-amine, N-nitrosodibutyl-amine, N-nitrosomorpholine and N-nitrosopyrrolidine, one carcinogenic diazo color, 4-dimethylaminodiazobenzene and one carcinogenic nitrogen-containing heterocyclic compound, quinoline, all induced DNA interstrands cross-linking with dosage correlation after metabolic activation. However, the non-carcinogens in corresponding series for control, aflatoxin B2, N-nitroso-diphenylamine, 4′-bromo-4-dimethylaminodiazobenzene and isoquinoline, cannot induce DNA interstrands cross-linking at all in the same condition. A method for the determination of cross-linking ratio between DNA complementary bases in total DNA interstrands cross-linking, which has no monitoring measure as yet, has been established for the first time based upon a 24 hour repairing experiment. The DNA complementary pair cross-linking ratio induced by a metabolized carcinogen is correlated with its carcinogenic potential. It may be concluded that the mutations including point and frameshift mutagenesis induced by aflatoxin and other carcinogens are switched on by their corresponding cross-linking base pair between complementary bases. Therefore, the di-region theory is a reasonable molecular mechanism for chemical, endogenous and physical carcinogenesis.  相似文献   

15.
Nair DT  Johnson RE  Prakash S  Prakash L  Aggarwal AK 《Nature》2004,430(6997):377-380
Almost all DNA polymerases show a strong preference for incorporating the nucleotide that forms the correct Watson-Crick base pair with the template base. In addition, the catalytic efficiencies with which any given polymerase forms the four possible correct base pairs are roughly the same. Human DNA polymerase-iota (hPoliota), a member of the Y family of DNA polymerases, is an exception to these rules. hPoliota incorporates the correct nucleotide opposite a template adenine with a several hundred to several thousand fold greater efficiency than it incorporates the correct nucleotide opposite a template thymine, whereas its efficiency for correct nucleotide incorporation opposite a template guanine or cytosine is intermediate between these two extremes. Here we present the crystal structure of hPoliota bound to a template primer and an incoming nucleotide. The structure reveals a polymerase that is 'specialized' for Hoogsteen base-pairing, whereby the templating base is driven to the syn conformation. Hoogsteen base-pairing offers a basis for the varied efficiencies and fidelities of hPoliota opposite different template bases, and it provides an elegant mechanism for promoting replication through minor-groove purine adducts that interfere with replication.  相似文献   

16.
暗纹东方鲀线粒体若干tRNA基因的克隆及序列分析   总被引:1,自引:0,他引:1  
利用分离纯化的暗纹东方鲀肝脏mtDNA为模板,按照红鳍东方纯(Takifugu rubripes)mtDNA序列设计合成特异引物进行PCR扩增,首次克隆并测定了暗纹东方纯mtDNA的Cytb、COⅠ、COⅡ、COⅢ、D-loop等5个重要基因及其侧翼的8个tRNA基因。上述基因均已在GenBank登录。8个tRNA基因含有69-72个碱基。推定了各个tRNA的二级结构并进行了初步的序列分析。结果表明:8个tRNA基因具有较为典型的三叶草型结构,各臂的碱基配对率大多数较高,稳定性较好.  相似文献   

17.
Ling H  Boudsocq F  Plosky BS  Woodgate R  Yang W 《Nature》2003,424(6952):1083-1087
Ultraviolet light damages DNA by catalysing covalent bond formation between adjacent pyrimidines, generating cis-syn cyclobutane pyrimidine dimers (CPDs) as the most common lesion. CPDs block DNA replication by high-fidelity DNA polymerases, but they can be efficiently bypassed by the Y-family DNA polymerase pol eta. Mutations in POLH encoding pol eta are implicated in nearly 20% of xeroderma pigmentosum, a human disease characterized by extreme sensitivity to sunlight and predisposition to skin cancer. Here we have determined two crystal structures of Dpo4, an archaeal pol eta homologue, complexed with CPD-containing DNA, where the 3' and 5' thymine of the CPD separately serves as a templating base. The 3' thymine of the CPD forms a Watson-Crick base pair with the incoming dideoxyATP, but the 5' thymine forms a Hoogsteen base pair with the dideoxyATP in syn conformation. Dpo4 retains a similar tertiary structure, but each unusual DNA structure is individually fitted into the active site for catalysis. A model of the pol eta-CPD complex built from the crystal structures of Saccharomyces cerevisiae apo-pol eta and the Dpo4-CPD complex suggests unique features that allow pol eta to efficiently bypass CPDs.  相似文献   

18.
Seven sets of protein target sites, which occur in several gene promoters, have been analyzed. The results suggest that there is a possible mode of specific recognition of double-helical nucleic acids by proteins. This recognition mode is related to a special topological property of double-helical DNA, which is termed base spatial pattern (BSP) of DNA segment. BSP is the spatial topological property determined only by the spatial arrangement of the bases on double-helical DNA segment.  相似文献   

19.
Site-directed mutagenesis (SDM) has been a very important method to probe the function-structure relationship of proteins. In this study, we introduced an easy-to-use, polymerase chain reaction (PCR)-based SDM method for double-stranded plasmid DNA, with a designed restriction site to ensure simple and efficient mutant screening. The DNA sequence to be mutated was first translated into amino acid sequence and then the amino acid sequence was reversely translated into DNA sequence with degenerate codons, resulting in a large number of sequences with silent mutations, which contained various restriction endonuclease (RE) sites. Certain mutated sequence with an appropriate RE site was selected as the target DNA sequence for designing a pair of mutation primers to amplify the full-length plasmid via inverse PCR. The amplified product was 5′-phosphorylated, circularized, and transformed into an Escherichia coli host. The transformants were screened by digesting with the designed RE. This protocol uses only one pair of primers and only one PCR is conducted, without the need for hybridization with hazardous isotope for mutant screening or subcloning step.  相似文献   

20.
A new Watson-Crick base pair, with a hydrogen bonding pattern different from that in the A.T and G.C base pairs, is incorporated into duplex DNA and RNA by DNA and RNA polymerases and expands the genetic alphabet from 4 to 6 letters. This expansion could lead to RNAs with greater diversity in functional groups and greater catalytic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号