首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
研究在无锡市两个站点进行细颗粒物采样,获得了不同季节代表月份(2014年4、7、10、12月)和重污染天气条件下(2015年1月)PM2.1的质量、化学元素、水溶性离子以及碳组分的浓度并进行分析,结合化学质量平衡模型(CMB model)计算了无锡市全年以及重污染天气下不同排放源对细颗粒物的贡献,结合排放清单对二次气溶胶进行再解析,得到最终的排放源贡献结果.无锡全年平均PM2.1浓度为68.6μg·m~(-3),崇宁站浓度(71.9μg·m~(-3))高于旺庄站浓度(65.3μg·m~(-3)),冬季浓度高于其它季节,平均可达85.7μg·m~(-3),重污染天气浓度为122.8μg·m~(-3),明显高于全年平均水平.细颗粒物中最主要的化学成分是二次无机盐离子(36.4%)和碳组分(29.1%),重污染情况下有机碳成分明显升高,可以达到38.4%,表明二次有机气溶胶的转化生成和积累老化是细颗粒物浓度升高的主要原因.利用CMB模型解析得到无锡全年PM2.1来源贡献比例,各类排放源贡献依次是二次硝酸盐(26.4%)、二次硫酸盐(22.6%)、二次有机气溶胶(7.8%)、电厂燃煤(7.3%)、土壤扬尘(6.5%)、柴油车尾气(6.4%)、汽油车尾气(4.1%)、秸秆焚烧(3.4%)、建筑扬尘(3.3%)、城市扬尘(2.5%)、海盐气溶胶(2.2%)、餐饮油烟(1.1%)、钢铁冶炼(1.0%),可以看出无锡市细颗粒物排放贡献主要来自于二次气溶胶的转化生成、汽车尾气和扬尘类的贡献.基于本地排放清单进行二次来源解析,得到无锡全年各类排放源贡献依次为电厂燃煤(30.68%)、钢铁冶炼(13.92%)、其它工业(10.48%)、秸秆焚烧(3.49%)、汽油机动车尾气(6.50%)、柴油机动车尾气(8.80%)、船舶(0.44%)、建筑机械(0.66%)、民航飞机(0.03%)、建筑扬尘(3.3%)、土壤扬尘(6.5%)、城市扬尘(2.5%)、餐饮油烟(1.1%)、海盐(2.2%)、其它来源(9.40%),结合二次解析计算,可以看出无锡市细颗粒物排放贡献主要来自于电厂燃煤、工业冶炼、汽车尾气,因此应该加强对燃煤和工业生产活动的管控,控制机动车尾气排放,大力发展清洁能源.  相似文献   

2.
利用2016年武清区大气污染物监测数据,研究了武清区PM_(2.5)及SO_2、NO_2等典型大气污染物浓度变化特征和相互关系。结果表明:2016年PM_(2.5)污染较严重,年均浓度分别为73μg·m~(-3),超标1.1倍。大气中SO_2年均值为25μg·m~(-3),NO_2年均值47μg·m~(-3)。冬季及春秋季节大气中存在明显的二次转化过程,大气中的SO_2和NO_2通过转化生成硝酸盐和硫酸盐,对PM_(2.5)浓度变化具有重要影响。  相似文献   

3.
为探讨高原城市昆明大气中水溶性无机离子的季节和空间变化特征,选取2013年4月至2014年5月昆明市3个采样点进行了PM2.5样品采集,分析了PM2.5及水溶性无机离子的污染特征,并结合气象因素、硫氧化率、氮氧化率及主成分分析法对其主要来源进行了分析.结果表明:PM_(2.5)质量浓度季节变化为春((105.9±48.0)μg/m~3)冬((92.7±51.6)μg/m~3)秋((74.7±41.4)μg/m~3)夏((72.2±30.3)μg/m~3).总水溶性无机离子质量浓度季节变化特征为夏((38.0±18.3)μg/m~3)冬((22.0±11.4)μg/m~3)春((18.4±4.8)μg/m~3)秋((13.6±3.1)μg/m~3);其中SO~(2-)_4、Ca~(2+)、NO~-_3及NH~+_4为PM_(2.5)中主要的水溶性无机离子,分别占总离子质量浓度的27.7%、17.8%、15.2%和9.5%;二次离子质量浓度之和年均为13.9μg/m~3,占PM_(2.5)质量浓度的16.5%,表明高原城市昆明大气中二次组分较少.NO~-_3/SO~(2-)_4为0.21~0.68之间,表明固定源是主要污染贡献源.主成分分析结果表明水溶性无机离子主要来源于土壤扬尘和建筑扬尘的混合源、燃煤源和工艺过程源.  相似文献   

4.
采用积尘负荷法,针对北京市各类道路(主干道、次干道、快速路和支路)共采集样品256个,以此来建立北京市铺装道路扬尘排放区清单。采用来自美国环保署的"AP-42"方法,对北京市各类道路扬尘排放因子与排放清单进行核算,形成以相关水平数据为基础的调研方案,其中包括车流量、车重以及道路长度等指标。结果表明:次干道、快速路、支路和主干道的道路积尘负荷分别为2.54,2.34,2.19,1.75 g/m~2;不同类型道路扬尘总悬浮颗粒物(total suspended particulate,TSP)、PM_(10)和PM_(2.5)的平均排放因子分别为6.29 g/(km·辆)(每辆车行驶1 km扬起的扬尘颗粒物质量)、3.66 g/(km·辆)和0.72 g/(km·辆),对应的排放清单分别为641.4×10~3,465.1×10~3,74.7×10~3 t/a.分析扬尘总量时空变化,得出北京市道路扬尘具有两种变化规律:一种为季节性变化规律,冬春两季排放总量较大,夏秋两季排放总量较小;另一种为区域性变化规律,快速路和主干道排放总量较大,次干道和支路排放总量较小。  相似文献   

5.
针对2019年1月2—12日太原市发生的一次PM_(2.5)重污染过程,利用单颗粒气溶胶质谱仪(SPAMS)分析了PM_(2.5)的化学组成,根据太原市PM_(2.5)源谱库对主要成分进行了来源解析,并结合激光雷达监测综合分析了此次重污染过程的成因。监测结果显示,此次重污染过程中PM_(2.5)浓度超标严重,最高日均质量浓度达298μg·m~(-3),超标2.97倍;重污染期间硝酸盐、硫酸盐和有机碳是PM_(2.5)的主要组分,分别占22.32%、21.71%和18.10%;在线源解析结果显示,污染过程中主要以燃煤源、机动车尾气和工业工艺源为主,分别占30.11%、22.78%和18.42%;激光雷达及气象数据分析表明,此次重污染是受高湿静稳、逆温、边界层高度低等不利气象条件影响,加之区域污染传输和本地污染积累而引起空气质量的恶化。  相似文献   

6.
基于Sunset碳分析仪对上海城区冬季重污染期PM_(2. 5)中的有机碳(OC)和元素碳(EC)浓度展开为期一个月(2014年12月1日~31日)的小时分辨率在线连续监测,并采用优化的最小R2算法对二次有机气溶胶(SOC)含量进行了估算。观测期间的PM_(2. 5)、OC和EC的平均浓度(mean±1σ)分别为(67. 5±40. 5)μg·m~(-3),(9. 9±4. 8)μg·m~(-3),(3. 1±1. 7)μg·m~(-3),其中总碳TC占PM_(2. 5)质量浓度比重为32. 2%。OC/EC的平均值为3. 5,SOC的浓度(2. 4±2. 3)μg·m~(-3),占OC比重为24. 5%。EC浓度的日变化与车流量一致,呈现出显著的早晚高值,表明机动车是上海EC的主要污染源。SOC浓度在午后达到极大值,说明光化学反应是SOC形成的重要过程。对采样期间的一次典型污染事件(15日20:00~16日5:00)进行来源分析发现,来自于生物质燃烧输送和机动车一次排放的贡献较少;而SOC占OC的比重明显高于非污染期间,表明二次成核是雾霾期有机气溶胶污染的关键过程。  相似文献   

7.
基于对天津市23个自动空气质量监测站点的SO_2、NO_2、PM_(10)、PM_(2.5)、CO和O_3监测数据进行分析,掌握了2014年12月1日-2015年11月30日期间各项污染物的时空分布特征,并选取主要污染物分析其时间变化特征和空间分布特征.采用Kriging方法对6项污染物进行分析,获取天津市大气污染物的空间插值分布图.研究结果表明,天津市PM_(10)质量浓度年均值为113μg/m~3,PM_(2.5)年均值为69μg/m~3,均超过二级标准;颗粒物质量浓度呈现明显的季节变化特征,PM_(2.5)浓度季均值从高到低依次为冬季(95μg/m~3)、秋季(64μg/m~3)、春季(63μg/m~3)、夏季(54μg/m~3);站点对比结果表明团泊洼站点污染最严重,而塘沽环保局优良率最高.从空间分布来看,PM_(10)、PM_(2.5)、SO_2、NO_2均表现出中部至南部区域为高值分布区域,说明天津市本地污染排放对大气环境污染的贡献为主要影响因素;而O_3和CO均表现为市区浓度较低而天津市南北区域形成高值且呈现相反分布.  相似文献   

8.
利用2018年1月、4月、7月、10月郑州市城区8个监测站点的PM_(2.5)和PM_(10)浓度数据与气象数据,对郑州市城区PM_(2.5)和PM_(10)的时相变化特征及气象要素对其产生的影响进行研究.结果表明:郑州市城区在1月份的PM_(2.5)浓度最高(118.1μg·m~(-3)),污染严重,4月份PM_(10)浓度最高(169.4μg·m~(-3)).通过分析PM_(2.5)和PM_(10)的比值(PM_(2.5)/PM_(10))发现, PM_(2.5)是郑州市城区主要的大气污染物.PM_(2.5)和PM_(10)与气象要素之间的相关分析表明,PM_(2.5)和PM_(10)与气温和露点温度均呈显著负相关(P0.01),PM_(10)与降水呈显著负相关(P0.05),PM_(2.5)与气温之间的相关性(r=-0.441,P0.01)高于PM_(10)和气温的相关性(r=-0.311,P0.01).另外,当风速在2~3 m·s~(-1)时,PM_(10)最低;而风速大于4 m·s~(-1)时,颗粒物浓度增加明显,且对于PM_(10)的增加作用更显著.露点温度与颗粒物浓度之间也存在一定关系,当露点温度大于0℃时,颗粒物浓度会随露点温度的增加而降低.2018年郑州市PM_(2.5)与PM_(10)昼夜变化呈双峰型特征;风速与温度的双重作用导致PM_(2.5)浓度先于PM_(10)达到最高值,而空气湿度和露点温度则是造成04:00时颗粒物较低的主要原因.另外,通过多元回归分析发现,各月份昼夜时段颗粒物浓度主要受温度和相对湿度影响;在各时段中,温度与颗粒物浓度关系最为密切,风速次之,湿度最弱,各气象要素对PM_(2.5)浓度的影响较PM_(10)浓度更大.  相似文献   

9.
于2015年6月~2016年5月对广州大气细粒子PM_(2.5)进行持续观察,分析了样品中有机碳(organic carbon,OC)和元素碳(elemental carbon,EC)的含量.结果表明:广州大气PM_(2.5)含量为(66.03±43.11)μg·m~(-3),OC含量为(8.19±5.01)μg·m~(-3),EC含量为(1.75±0.80)μg·m~(-3); OC,EC和总碳(total carbon,TC)占PM_(2.5)的比例分别为16.73%,3.85%和20.58%,表明广州细粒子的碳污染程度较为严重; PM_(2.5),OC和EC污染都呈现冬季春季夏季秋季的特征,与历史研究基本一致; OC,EC相关系数较高(R~2=0.929),表明二者来源较为相近,且PM_(2.5)中EC1占比例最高(45.41%),表明广州燃煤和机动车尾气是重要的污染源;二次有机碳(SOC)为(4.10±3.56)μg·m~(-3),占OC的比例为46.19%,表明广州二次有机碳的排放与形成是碳污染的重要因素.与历史数据相比,广州大气污染情况有所改善,碳气溶胶污染几乎达到历史最低值.  相似文献   

10.
为研究2014年中国四大工业基地25个主要城市的空气质量污染情况,对25个城市2014年1月~2015年2月的数据进行SPSS聚类分析,研究其整体分布情况,并应用统计学和GIS软件分析其主要城市大气颗粒物的污染分布特征,同时利用SPSS软件对大气污染物PM_(10)、SO_2、NO_2、CO、O_3和PM_(2.5)做相关性分析。结果表明:(1)25个城市PM_(2.5)年均质量浓度在32.94~100.23μg·m~(-3)之间,其中分布在40~70μg·m~(-3)之间的城市相对集中,占所有城市的68%,仅3个城市的PM_(2.5)年均质量浓度小于35μg·m~(-3);(2)PM_(2.5)季节变化特征大体表现为冬季秋季春季夏季,重度污染主要集中在12月和1月;(3)从空间分布上看,京津唐污染水平高于其他三个工业基地,珠三角污染水平最低;(4)四大工业基地城市群PM_(2.5)的浓度与PM_(10)、SO_2、NO_2、CO的浓度存在显著相关性。由于温度、气候等原因,在珠三角和长三角O3与PM_(2.5)呈正相关,而在京津唐和辽中南工业基地则呈负相关。  相似文献   

11.
采用综合污染指数法、污染负荷系数法、Daniel趋势检验、Spearman秩相关系数法并结合空气质量指数(AQI)数据,探讨了近5a来太原市环境空气污染物浓度变化,结果表明,2015—2019年,太原市SO_2的超标天数和污染物浓度均逐年下降(超标天数由50d下降至0d,污染物浓度由77.55μg·m~(-3)下降至29.52μg·m~(-3));而NO_2的超标天数和污染物浓度均逐年上升(超标天数由2d上升至40d,污染物浓度由43.11μg·m~(-3)升至59.81μg·m~(-3)),变化趋势显著;PM_(10)和PM_(2.5)的变化表现出一定的波动,变化趋势不显著;空气综合污染指数呈现先升高后降低的趋势,环境空气污染在冬季较为严重.可吸入颗粒物(PM_(10)和PM_(2.5))历年的负荷系数均显著高于SO_2和NO_2,空气污染物以可吸入颗粒物为主.从各年AQI累积的数值之和来看,空气污染有逐渐加重的趋势.  相似文献   

12.
为研究泉州市PM_(2.5)的时空变化特征及其影响因素,以期为有针对性地提出大气污染防治对策提供科学依据,选取2016年泉州市主城区的一城区点和一背景点大气监测站在线PM_(2.5)与污染气体数据,并同期采集PM_(2.5)样品进行综合分析.结果表明:1)城区点和背景点的年均PM_(2.5)质量浓度分别为(31.06±20.96)μg/m~3和(20.59±10.29)μg/m~3,低于我国空气质量标准中的年均质量浓度二级限值;2)PM_(2.5)的月均质量浓度在2—3月最高,其次为11月,这可能与污染物远源传输和不利天气条件的双重影响有关;3)冬、春季城区点PM_(2.5)同时受到一次排放污染物(如工业、机动车)和二次颗粒物的共同影响,而背景点PM_(2.5)则和较多的二次反应产物生成相关;4)夏、秋季两个站点PM_(2.5)和SO_2、NO_2的相关性明显提升,伴随着夏、秋季主导的西南风,验证了西南部工业区排放污染物传输的影响,此外,城区点PM_(2.5)质量浓度还受到粉尘的显著影响;5)硫氧化率和氮氧化率在冬、春季高于夏、秋季,这可能与上游区域污染物的远源传输相关.上述结果为全面掌握泉州市大气颗粒物的分布规律提供了基础数据.  相似文献   

13.
根据海口市2013—2014年空气污染物的监测数据及气象资料,研究了该市的空气质量特征及其与气象要素的关系.结果表明:海口市空气质量优良率为95%;PM_(2.5),PM_(10),O_3是该市的主要污染物,年均质量浓度分别为25.29μg·m~(-3),44.48μg·m~(-3),77.15μg·m~(-3);该市的空气质量随季节变化的特征明显,春、夏、秋、冬四季的AQI值分别为42,35,54,65;污染物的"周末效应"与北京、深圳等国内其他城市不同,表现为:周末浓度大于工作日浓度;旅游黄金周期间污染物均有不同程度增加;污染物日变化特征明显;SO_2,PM_(2.5)表现出一定的区域污染特征;NO_2,PM_(10),CO和O_3表现出一定的局部污染特征;降水、风速、风向、温度、湿度对空气质量的影响显著,在多数情况下AQI与降水、风速、温度、湿度等存在负相关,而与气压存在正相关;对典型污染过程的分析表明:PM_(2.5)受扩散条件、本地排放及外地输送共同影响,O_3浓度与蒸发量、相对湿度及风速等指标有明显关系.  相似文献   

14.
为更好地认识上海PM_(2.5)的化学组成特征,使用大流量采集器采集了上海典型地区不同季节的PM_(2.5)样品;利用元素分析仪、热/光碳分析仪、离子色谱仪、化学氧化-紫外分光光度法等多种形式分析了样品中含碳、氮、硫组份的质量浓度及组成;对不同方法的结果进行了比较,探讨了这些组份的季节分布特征及影响因素;建立了利用元素分析仪测定结果估算大气PM_(2.5)中含碳组份、含氮组份和含硫组份质量浓度的方法.研究结果表明,上海PM_(2.5)中总碳(total carbon,TC)的春、夏、秋、冬季平均质量浓度分别为14.26,10.44,11.89和24.35μg·m~(-3),氮元素的春、夏、秋、冬季平均质量浓度分别为8.72,3.07,5.07和17.09μg·m~(-3),而硫元素的春、夏、秋、冬季平均质量浓度分别为6.50,4.06,3.66和6.00μg·m~(-3).上海PM_(2.5)中的碳元素主要以有机碳和元素碳的形式存在,无机碳的贡献很小;绝大部分的含氮物质为水溶性含氮物质,且以无机氮为主;硫元素几乎全部以水溶性硫酸盐的形式存在.元素分析仪的测定结果可以有效地反映PM_(2.5)中含碳、氮、硫物质的质量浓度及组成特征.  相似文献   

15.
为了解北京城区灰霾期间PM_(2.5)中的水溶性离子的污染特征及来源,于2014年1月9日至2014年1月17日在首都师范大学对大气PM_(2.5)样品进行了连续采集,并利用离子色谱法对样品中的水溶性离子进行了分析.结果表明,PM_(2.5)中的水溶性离子质量浓度的日均值为(113.40±77.46)μg·m-3;10种水溶性离子(F~-,NO_2~-,SO_4~(2-),NO_3~-,Cl~-,NH_4~+,Ca~(2+),Na~+,Mg~(2+)和K~+)的总浓度的平均值为(65.34±50.06)μg·m~(-3),其中水溶性离子总量约占PM_(2.5)质量浓度的57%.重污染期间水溶性离子表现出爆发性增长,NO_3~-和SO_4~(2-)的增长率分别为7.57μg·h-1和8.12μg·h-1.结合气象因素发现当温度偏高,气压较弱,相对湿度较高,风速小且以偏南风为主时,PM_(2.5)及其中的水溶性离子质量浓度都维持在较高水平.主成分分析(Principal Component Analysis,PCA)结果也表明,随PM_(2.5)质量浓度逐渐增加的过程中,污染来源为人为二次污染、化石燃料燃烧、交通排放和工业排放,同时还可能存在生物质燃烧和粉尘及废物焚烧的共同影响.  相似文献   

16.
大气颗粒物作为济南市大气环境的首要污染物,严重影响了济南市环境空气质量.通过对济南市大气细颗粒物的滤膜采样与碳组分分析,对济南市细颗粒物中的碳质组分进行了研究,结果表明,OC、EC的平均质量浓度为12.1、4.8μg/m~3,占PM_(2.5)质量的12.0%和4.8%.OC为PM_(2.5)中的优势碳组分,春、夏、秋季的含量均在10%以上;春、夏、秋季TC对PM_(2.5)的贡献均达到了15%以上.济南春、夏、秋季PM_(2.5)中OC/EC比值分别为2.4、2.4、2.7,均大于2,说明济南春、夏、秋季都存在不同程度的二次有机污染.济南市春、夏、秋季有机碳中SOC的贡献率分别为14.8%、56.9%、49.6%.夏、秋季气温高,日照时间长的气象条件促进了SOC的形成.SOC质量浓度为4.8μg/m~3,总有机碳中SOC的贡献为40.4%,表明SOC已经成为济南市细颗粒物中的重要贡献源.通过对8个碳组分在PM_(2.5)中的含量分析发现,该采样点春、夏、秋季碳组分组成相似,特征组分均为EC1,说明汽油车尾气是济南市主要的污染源.  相似文献   

17.
测定了武汉经济技术开发区冬季大气中PM_(2.5)的质量浓度,并用IC和XRF技术对PM_(2.5)中的几种水溶性阴离子和无机元素进行了测定和分析。结果显示:监测周期内,武汉经济技术开发区冬季空气中PM_(2.5)的浓度范围是26.00~321.28μg/m~3,平均值为158.78μg/m~3,大大超过PM_(2.5)的国家空气质量二级标准限值(75μg/m~3);水溶性阴离子是PM_(2.5)的重要组分,PM_(2.5)中4种水溶性阴离子浓度大小顺序为NO_3~->SO_4~(2-)>F~->Cl~-,4种离子总和占PM_(2.5)总量的36.85%,13种无机元素总和占PM_(2.5)总量的25.08%;PM_(2.5)中NO_3~-与SO_4~(2-)的平均比值为1.22,NO_3~-与SO_4~(2-)的相关系数高达0.957 1,表明两者有一定的同源性,同时也说明武汉经济技术开发区冬季大气污染中移动源的贡献大于固定源;元素富集因子分析显示,Ti、Cr、Ni、Zn、As富集程度较高,富集因子均大于10,Ni富集因子大于1 000,Fe和Ni、Fe和Cr的相关系数分别是0.833和0.846,表明这些元素主要受人为污染源的影响。  相似文献   

18.
分析了2×600 MW机组所配套的两台双室五电场电除尘器(ESP)的设计、选型和改造。每台电除尘配套20台高压电源、一台炉配40台高压电源,改造工作不仅包括更换原80台单相电源为80台三相电源,而且将第一和第二电场的极板、极线及振打系统全部做了更换,改造后电除尘出口PM_(10)和PM_(2.5)(粒径分别低于10μm和2.5μm的颗粒物)的排放分别低于15 mg·Nm~(-3)和1.0 mg·Nm~(-3),PM_(2.5)占PM_(10)的比例在6.5%-7.5%,与改造前比较PM_(2.5)下降了95%以上。  相似文献   

19.
对于中国东部地区细粒子污染中存在的问题,用WRF-CMAQ空气质量模式,结合RSM模型,对颗粒物(PM),NO_x,SO_2,NH_3,非甲烷挥发性有机物(NMVOC)5种污染物与PM_(2.5)质量浓度之间的关联性及其影响进行分析.结果表明,排放条件和水平不同对PM排放的贡献不同,一次PM排放对3个地区PM_(2.5)贡献最为明显,贡献最低的是NMVOC.随着控制水平的提高,NH_3,NO_x,SO_2对PM_(2.5)贡献会上升.对于北京地区,区域SO_2排放对硫酸盐的贡献约80%,而本地SO_2排放仅贡献了10%;在低控制率下,NO_x排放对硫酸盐几乎没有贡献,随着控制率的提升,NO_x排放的贡献逐渐增加.对于北京地区硝酸盐的贡献,区域NO_x排放贡献近50%,本地NO_x排放仅仅贡献5%;区域NH_3排放的贡献约为30%,随着控制率的提高,本地NH_3排放的贡献也有所提高.  相似文献   

20.
在单因素试验基础上,采用Plackett-Burman设计和中心组合设计试验筛选和优化了提取剂用量、超声时间和超声温度等条件对超声辅助提取PM_(2.5)中Pb的影响.实验结果表明:在最佳提取条件下,即提取温度95℃,提取时间45 min,提取剂用量14.53 m L时,铅提取率最大.方法的加标回收率为84.0%~106%,相对标准偏差(RSD)在4.5%~6.1%之间,检出限为1.4μg·L~(-1).t检验结果表明超声提取法与加热板消解法及微波消解法(行业标准)之间不存在显著性差异,但超声提取法更为简便、快速、温和、安全.本方法应用于测定锦州市渤海大学(1~#)、解放路(2~#)、中央大街(3~#)、世博园(4~#)四个代表性采样点的PM_(2.5)中Pb的含量,其中2~#和3~#采样点的Pb污染最严重,分别为0.33μg·m~(-3)和0.41μg·m~(-3).虽然四个采样点Pb含量均未超过Pb浓度限值(0.5μg·m~(-3)),但Pb富集因子很高(100),表明Pb在大气颗粒物中富集明显,受人类活动影响较大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号