首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
提出了一种基于卫星遥感数据的近地面颗粒物质量浓度(PM值)估计方法 .采用Terra/MODIS卫星数据和基于连续两天MODIS数据的气溶胶光学厚度反演算法,反演出无锡地区的气溶胶光学厚度;再利用所反演的气溶胶光学厚度与地面实测颗粒物质量浓度数据进行分析,得出颗粒物质量浓度的大小分布范围与气溶胶光学厚度的关系模型;进一步利用研究区域中地面站点监测到的颗粒质量浓度数据对估算结果进行评估.结果表明该方法所估算的PM值与地面实测数据具有较好的相关性,且地面监测的颗粒物质量浓度均分布在卫星遥感数据所估算的范围之内.本研究证明了MODIS卫星数据监测地面颗粒物质量浓度的可行性,为近地面PM值的估算提供了有效手段.  相似文献   

2.
利用MODIS遥感大气气溶胶及气溶胶产品的应用   总被引:21,自引:0,他引:21  
介绍了利用EOS卫星上MODIS传感器遥感大气气溶胶光学厚度(AOD)的技术,总结了作者利用MODIS资料进行的研究工作,包括利用太阳光度计的地面观测进行MODIS 10 km分辨率Level 2气溶胶产品的校验、利用该产品分析我国陆地上空气溶胶光学厚度分布特征、1 km高分辨率气溶胶光学厚度反演、气溶胶光学厚度产品应用于大气污染的分析等.证实MODIS遥感手段获取气溶胶分布,不仅为全球和区域气候变化研究提供了基础数据,而且也为区域环境大气污染的研究提供了新工具.  相似文献   

3.
以杭州市8区为研究区,利用高分四号卫星数据,基于暗目标算法和地表反射率数据库相结合的算法,分别对2016年9月2日、2016年9月3日、2016年12月31日和2017年7月26日4个时相的气溶胶光学厚度进行反演,在此基础上分析杭州市AOD的分布特征,并结合MODIS标准陆地气溶胶产品和地基观测数据进行精度验证,同时分析大气污染物与AOD变化之间的关系.结果显示杭州城区气溶胶光学厚度分布特征为东北部高、西南部低;精度验证相关系数分别为0.7和0.9,反演结果相对可靠;研究日内大气颗粒物与气溶胶光学厚度的日内变化趋势基本保持一致,污染物浓度均在中午维持较大水平.  相似文献   

4.
通过与地基气溶胶观测数据的对比,确认了MODIS,Sea WiFS气溶胶光学厚度产品用于研究中国海域气溶胶分布和变化特征的有效性.在此基础上,交叉比较了MODIS和Sea WiFS的气溶胶三级产品,发现他们在空间变化趋势上是一致的,在中国海域的气溶胶光学厚度都是随着离岸越远,气溶胶的光学厚度越来越小,在北纬30°-35°有高值区,在靠近大陆的沿岸地带也是气溶胶的光学厚度的高值区.Sea WiFS反演的气溶胶光学厚度整体比MODIS反演的气溶胶光学厚度偏高,两者的年平均气溶胶光学厚度有明显的区别.  相似文献   

5.
基于WRF-Chem的AOD预报在一次沙尘天气中的研究   总被引:1,自引:1,他引:0  
气溶胶光学厚度(AOD)是表征大气气溶胶光学特征的最基本量;它可以用来推算大气气溶胶含量,是确定大气气溶胶辐射气候效应及大气污染程度的关键因子。利用WRF-Chem数值模式对我国北方2010年3月19~23日的一次沙尘天气过程进行了模拟分析,主要分析了模式对于AOD的预报能力。结果表明:模式对于气溶胶光学特性具有较好的模拟能力,模拟结果中AOD、PM2.5、PM10的时空分布具有很好的一致性。通过与MODIS AOD卫星资料和地基AERONET观测网站点实测数据进行对比分析,发现AOD模拟结果与卫星产品和站点实测数据较吻合,模式24 h预报能够较好地体现AOD随时间的变化特征。  相似文献   

6.
基于6S模型对比分析了3种大气气溶胶模式在北京地区夏季气溶胶光学厚度反演中的适用性.首先下载Terra-MODIS L1B夏季空间分辨率为1,km的数据,基于城市型、大陆型、海洋型3种标准大气气溶胶模式生成了3套查找表,利用暗像元法,反演得到了北京地区夏季大气气溶胶光学厚度.然后利用AERONET提供的实测陆地气溶胶光学厚度对反演结果进行精度验证.结果表明:海洋型和大陆型气溶胶模式反演的气溶胶光学厚度与地基数据相关性较高,相关系数分别为0.806,6和0.766,4;而城市型气溶胶模式反演的气溶胶光学厚度与地基数据存在明显差异,相关系数仅为0.482,5;将晴天和雾霾天气反演结果与地基数据进行对比,可以看出在天气晴朗时北京地区采用海洋型气溶胶模式反演气溶胶光学厚度更为准确.  相似文献   

7.
MODIS资料遥感黄土高原半干旱地区气溶胶光学厚度   总被引:2,自引:0,他引:2  
借助6S辐射传输模式,模拟了MODIS红、蓝、中红外通道的表观反射率在不同气溶胶类型下对地表反射率和气溶胶光学厚度的敏感性试验.利用Kaufman扩展的暗像元方法反演了黄土高原半干旱地区晴空天气条件下的2.5 km高分辨率气溶胶光学厚度,选取的10天反演结果有6天的相对误差较小,在16%以下,绝对误差小于0.05的有7天.反演的10天资料中,兰州大学半干旱气候与环境观测站与之对应的CE-318观测资料的光学厚度平均值为0.2226,反演的平均值为0.2170,反演结果较合理.将反演结果与CE-318观测资料和NASA发布的气溶胶产品进行了对比,显示反演结果与NASA发布结果的空间发布存在一致性.  相似文献   

8.
利用风云2C静止卫星可见光资料反演气溶胶光学厚度   总被引:5,自引:0,他引:5  
探讨利用中国风云2C静止卫星可见光资料反演气溶胶光学厚度(AOD)的数值方法。通过计算一个月中每日同一时刻平均地表反射率来降低地表反射率估计的随机性, 讨论了该方法中对清洁天AOD值的不同假设对结果的影响。将2008年5月由风云2C可见光资料反演得到的AOD产品分别与东亚6个AERONET站点的AOD产品和MODIS的AOD产品进行了比较, 分析了风云2C卫星的AOD产品算法的误差来源和降低误差影响以及改善产品质量的方案。结果对比表明, 在东亚地区利用风云2C可见光资料反演的AOD产 品可以展示气溶胶的分布样式, 但是目前的算法高估了中国西南部地区和低纬度一些地区的AOD值而低估了中国东部地区的AOD值。  相似文献   

9.
使用2000—2018年的MODIS MOD04_3K气溶胶标准产品对江西省气溶胶光学厚度(AOD)进行提取.通过合成年均值、月均值和季均值AOD数据,分析550 nm处气溶胶光学厚度的时空变化特征.结果表明:2006年与2014年为两个波峰,南昌市、宜春市等人为活动频繁的中北部地区AOD值偏高,省边缘及南部AOD值较...  相似文献   

10.
选用合理的气溶胶类型能够极大提高气溶胶光学厚度的反演精度,对此本文提出一种基于中分辨率成像光谱仪(MODIS)与地基太阳光度计数据相结合,以确定气溶胶各组分体积百分比的方法,利用该方法得到了北京地区自定义的气溶胶类型。进一步测试了自定义型和两种标准气溶胶类型(大陆型、城市型)下的表观反射率对气溶胶光学厚度的敏感性,结果显示不同的气溶胶类型使红、蓝和中红外波段表观反射率对于气溶胶光学厚度的敏感性有显著差异。使用暗像元法反演北京地区晴空条件下不同气溶胶类型的气溶胶光学厚度,并与AERONET地面观测数据对比进行精度验证。自定义气溶胶类型的反演结果精度最高,且相较于两种标准气溶胶类型的相对误差要低10%以上。城市型气溶胶类型对于光学厚度的反演存在明显高估,不适用于北京地区,这与其煤烟性粒子所占比重较大有关。  相似文献   

11.
在地表反射率较高、结构复杂的城市地区,传统的浓密植被气溶胶反演算法难以适用。通过分析地物波谱库中的植被和土壤波谱信息,模拟建立归一化植被指数(NDVI)与红、蓝波段地表反射率之间的相关关系,提出使用MODIS植被指数产品(MOD12)确定地表反射率的方法,实现该类型区域气溶胶光学厚度(AOD)反演。以Landsat8OLI数据为例,选取北京市为研究区进行反演实验,使用AERONET地基观测数据与MODIS气溶胶产品(MOD04)对反演结果进行验证。结果表明,当反射率较高时,NDVI与红、蓝波段地表反射率仍存在较高的相关性,利用该指数能够准确获取高反射率地区的地表信息,算法反演结果与实测值具有较好的一致性,总体相关系数达0.966,68%的反演结果满足误差精度要求,当AOD0.5时,有82.3%的结果满足精度要求,较MOD04精度有了较大改善。  相似文献   

12.
使用香港元朗地区2008年MODIS卫星遥感的气溶胶光学厚度(AOD)产品、激光雷达气溶胶消光系数垂直分布、地面相对湿度和地面气溶胶浓度观测资料等数据,通过激光雷达数据建立地面消光系数和激光雷达AOD与气溶胶标高的关系,利用这一关系和卫星AOD进行地面消光系数的反演估计,并进行湿度订正;通过建立地面气溶胶浓度和地面消光系数的关系,进行卫星AOD产品和激光雷达气溶胶探测反演地面大气颗粒物质量浓度的研究及应用。结果表明,卫星估计的地面消光系数与小时平均的颗粒物质量浓度观测值的相关系数为0.57~0.86(PM2.5)和0.59~0.78(PM10),估计的质量浓度与小时平均的观测值对比的均方根偏差分别为11.64~25.34μg/m3(PM2.5)和24.64~91.64μg/m3(PM10),表明可以通过卫星遥感进行大气悬浮颗粒物污染的监测应用。其中1 km分辨率的AOD产品,因其更高的空间分辨率,更适合反映具有复杂地形的城市地区大气悬浮颗粒物污染。  相似文献   

13.
使用香港元朗地区2008年MODIS卫星遥感的气溶胶光学厚度(AOD)产品、激光雷达气溶胶消光系数垂直分布、地面相对湿度和地面气溶胶浓度观测资料等数据, 通过激光雷达数据建立地面消光系数和激光雷达AOD与气溶胶标高的关系, 利用这一关系和卫星AOD进行地面消光系数的反演估计, 并进行湿度订正; 通过建立地面气溶胶浓度和地面消光系数的关系, 进行卫星AOD产品和激光雷达气溶胶探测反演地面大气颗粒物质量浓度的研究及应用。结果表明, 卫星估计的地面消光系数与小时平均的颗粒物质量浓度观测值的相关系数为0.57~0.86 (PM2.5)和0.59~0.78 (PM10), 估计的质量浓度与小时平均的观测值对比的均方根偏差分别为11.64~25.34 g/m3 (PM2.5)和24.64~91.64 g/m3 (PM10), 表明可以通过卫星遥感进行大气悬浮颗粒物污染的监测应用。其中1 km分辨率的AOD产品, 因其更高的空间分辨率, 更适合反映具有复杂地形的城市地区大气悬浮颗粒物污染。  相似文献   

14.
利用杭州市2003-2015年逐日MODIS数据,基于暗像元算法反演其500m空间分辨率的气溶胶光学厚度(AOD)历史序列,并结合地基观测数据进行验证,在此基础上分析杭州市AOD时空分布特征.结果表明:AOD反演结果的平均绝对误差、相对误差分别为0.16%、33.08%,反演结果相对可靠;在2003-2015年期间,杭州市AOD年均值呈波动状态,但无明显增加或下降趋势,最大值出现在2008年,最小值出现在2013年;春、夏季AOD均值较高,大于秋、冬季,冬季AOD均值最低;AOD月均值在1-6月呈现增加趋势,并在6月达到峰值,随后在7-12月呈减小趋势;此外,杭州市AOD空间分布特征表现为东北部高、西南部低,其中,最高值区域主要分布于杭州市中心,次高值分布于江干区、余杭区东部、萧山区东部.  相似文献   

15.
星载激光雷达在大气气溶胶探测上具有观测范围大、精度高以及连续测量等优点,对于大气污染监测和气候变化研究具有重要意义.以星载激光雷达CALIOP L1b数据为基础,利用Fernald近端分析法反演了整层大气柱上气溶胶消光系数及其光学厚度.选择武汉市为试验区域,计算了2007年8月至12月期间武汉上空的气溶胶光学厚度,与地面光度计的实测数据比较表明,CALIOP反演的AOD精度较高.  相似文献   

16.
利用2009年1 12月兰州地区的MODIS气溶胶光学厚度产品与全球自动观测网(AERONET)SACOL站(104.08 E,35.57 N)数据进行对比分析,相关系数达到0.82,线性拟合的斜率为1.13,截距为0.07,表明MODIS AOD能反映兰州地区气溶胶分布的信息.利用MODIS AOD产品与兰州市空气污染指数做相关分析,二者的相关程度较低.在进行湿度影响因子、气溶胶标高订正后,二者相关性有了较为显著的提高,说明MODIS AOD产品可应用于监测兰州地区大气污染情况.  相似文献   

17.
利用国产风云三号卫星MERSI传感器监测气溶胶对研究气候变化、监测环境质量等有重要意义.在深蓝算法基础上,利用AQUA星MODIS的蓝光波段地表反射率产品,剔除异常值后作为清晰天的地表反射率,完成地气解耦,实现了FY-3B星MERSI传感器的气溶胶反演算法的构建.误差分析表明,MODIS与MERSI波段响应差异带来的气溶胶反演误差基本控制在0.07以下.针对北京地区,2016年4月至2017年3月的反演实验显示,本文获得的结果能较好地体现气溶胶浓度的空间分布,与MODIS气溶胶产品、AERONET地基观测结果有着较好的一致性;与城市型气溶胶相比,采用大陆型气溶胶能获得更多的有效数据,与地面数据的相关性也更高,相关指数在0.7左右.  相似文献   

18.
利用6S模式反演并分析兰州地区春季气溶胶光学厚度(AOD)分布情况,探讨了双向反射分布(BRDF)对气溶胶光学厚度反演结果的影响.结果表明:兰州地区2010年春季气溶胶光学厚度高值中心位于西工业区和城关区,最大值分别为0.46和0.31.不考虑BRDF时水面上空气溶胶光学厚度反演结果存在明显误差,经Walthall BRDF订正后,水面上空误差明显减小,说明经过Walthall BRDF订正后的6S模式适用于水面上空的气溶胶光学厚度反演.兰州大学半干旱气候与环境观测站(SACOL)站点(35.57°N,104.08°E)反演值和实测值比较表明,在无云晴天条件下,选用Walthall BRDF模式可以提高AOD反演精度.  相似文献   

19.
运用CE318太阳光度计对南宁地区气溶胶光学特性的季节变化特征进行了观测.反演得到气溶胶光学厚度(AOD500nm)季节分布:冬季(0.98)春季(0.77)秋季(0.75)夏季(0.47);ngstrm波长指数从大到小依次为冬季(1.33)夏季(1.30)秋季(1.15)春季(0.95);气溶胶粗模态上的体积数浓度:春季冬季秋季夏季,对应细模态的体积数浓度由大到小依次为:冬季秋季夏季春季;单次散射反照比(以440nm为例)在夏季(0.98)最高,散射光学厚度在冬季有极大值.由微脉冲激光雷达得到平均垂直消光系数大小依次为:冬季(0.15)秋季(0.14)春季(0.13)夏季(0.08).根据地基观测结果分析了南宁地区气溶胶的季节类型,存在冬季(12、1、2月)的霾/混合气溶胶、春季(3~5月)的沙尘气溶胶、初夏(6月)的生物质气溶胶、夏季的背景气溶胶,以及秋季城市/工业气溶胶;进一步对比分析了地基、卫星(MODIS)遥感反演的AOD参数(137个样本),75%样本在误差范围内,MODIS总体上呈现污染天低估的特征(20%);干净天则多为高估结果,最高的误差频率出现在0~0.1区间.  相似文献   

20.
利用CE318地基观测的光学特性数据,反演南宁市气溶胶光学厚度、?ngstr?m波长指数α、浑浊度系数β,对光学特性的月、季节、日变化以及典型天气作了分析,并利用图解法研究南宁市气溶胶分类,加深对该地区气溶胶认识的同时也为南宁市气溶胶研究提供参考。结果表明:(1) AOD最高值和最低值分别出现在3月份、8月份,年平均值为(0. 53±0. 09),春季的AOD最高,夏季最低。AOD日变化曲线较平稳,且值较大的一天与PM2. 5、PM10走势一致。AOD高值区(AOD0. 7)与海盐型气溶胶及细模态气溶胶吸湿增长有关。(2)α最大和最小值分别出现在4月和6月份,年平均值是(1. 34±0. 08),春季的α最高,秋季最低,气溶胶粒子中细粒子占主导作用,南宁市属城市—工业型气溶胶。(3)β最高值和最低值分别出现在11月份、8月份,年均值是(0. 22±0. 02),曲线变化走势和AOD一致,β值在0. 2左右,说明空气有污染但还是比较清洁的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号