首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
设计采用双极性结型晶体管产生一个二阶温度补偿电压,并将其与一阶温度补偿电压加权叠加得到一个低温度系数的带隙电压.通过采用增大运放增益和负反馈回路提高电源抑制比.电路基于0.13μm BCD工艺实现,使用Cadence中Spectre环境进行仿真.在工作电源电压为5 V的情况下,温度等于27℃时输出电压为1.209 V,电源电压抑制比为-58 d B@100 Hz,在-40-130℃温度范围内,输出电压变化范围为0.93 mV,平均温度系数为4.51 ppm/℃.  相似文献   

2.
梁焰  吴玉广 《科技资讯》2007,(30):68-69
在A/D和D/A转换器、数据采集系统以及各种测量设备中,都需要高精度、高稳定性的基准电压源,并且基准电压源的精度和稳定性决定了整个系统的工作性能.电压基准源主要有基于正向VBE的电压基准、基于齐纳二极管反向击穿特性的电压基准、带隙电压基准等多种实现方式,其中带隙基准电压源具有低温度系数、高电源抑制比、低基准电压等优点,因而得到了广泛的应用.本文设计了一个高精度、输出可调的带隙基准电压源,并在SMIC0.25μmCMOS工艺条件下对电路进行了模拟和仿真.  相似文献   

3.
文章分析了带隙基准电压源中电阻补偿的原理,使用2种不同温度系数的电阻设计了一个低温度系数新型双极工艺带隙电压源电路,并基于CSMC 2μm36V双极工艺对电路进行仿真,实现了对基极发射极电压的三阶补偿。仿真结果表明,在10~30V输入电压范围内,该带隙电压源输出电压为2.12V;电源抑制比为120.2dB的频率点为14.85Hz;温度变化范围在-40~125℃时,温度系数为2.17×10~(-6)/℃。  相似文献   

4.
《河南科学》2016,(4):486-490
设计了一款宽温度范围并带有密勒补偿的带隙电压基准电路,基准输出可通过内接电阻调节.该电压源以带隙基准电路为基本电路,扩展预偏置电路和输出缓冲电路.此电路基于0.35μm CMOS工艺,利用Cadence仿真工具进行验证,结果表明该带隙基准的输入电压为2.3~4 V,可以输出受温度变化影响较小的高精度电压,低频时的电源抑制比为84 d B,基于以上性能优点,该基准电路可以应用于温度较宽的集成电路设计中.  相似文献   

5.
为提高带隙基准电压源的温度特性,采用Buck电压转移单元产生的正温度系数对VBE的负温度系数进行高阶曲率补偿.同时使用共源共栅结构(Cascode)提高电源抑制比(PSRR).电路采用0.5 μm CMOS工艺实现,在5 V电源电压下,基准输出电压为996.72 mV,温度范围在-25~125 ℃时电路的温漂系数为1.514 ppm/℃;当电源电压在2.5~5.5 V变化时,电压调整率为0.4 mV/V,PSRR达到59.35 dB.  相似文献   

6.
提出了一种新颖的利用负反馈环路以及RC滤波器提高电源抑制比的高精密CMOS带隙基准电压源.采用上海贝岭的1.2μm BiCMOS工艺进行设计和仿真,spectre模拟表明该电路具有较高的精度和稳定性,带隙基准的输出电压为1.254V,在2.7V-5.5V电源电压范围内基准随输人电压的最大偏移为0.012mV,基准的最大静态电流约为11.27μA;当温度-40℃-120℃范围内,基准温度系数为1mV;在电源电压为3.6V时,基准的总电流约为10.6μA,功耗约为38.16μW;并且基准在低频时具有100dB以上的电源电压抑制比(PSRR),基准的输出启动时间约为39μs.  相似文献   

7.
设计了低温度系数、高电源抑制比BiCMOS带隙基准电压发生器电路.综合了带隙电压的双极型带隙基准电路和与电源电压无关的电流镜的优点.电流镜用作运放,它的输出作为驱动的同时还作为带隙基准电路的偏置电路.使用0.6μm双层多晶硅n-well BiCMOS工艺模型,利用Spectre工具对其仿真,结果显示当温度和电源电压变化范围分别为-45~85℃和4.5~5.5 V时,输出基准电压变化1 mV和0.6 mV;温度系数为16×10-6/℃;低频电源抑制比达到75 dB.电路在5 V电源电压下工作电流小于25μA.该电路适用于对精度要求高、温度系数低的锂离子电池充电器电路.  相似文献   

8.
提出了一种新型的高性能带隙基准电压源,该基准电压源采用共源共栅电流镜提供偏置电流,减少沟道长度调制效应带来的误差,并增加1个简单的减法电路,使得偏置电流更好地跟随电源电压变化,从而提高电路的电源抑制比。整体电路使用CSMC 0.6μm CMOS工艺,采用Hspice进行仿真。仿真结果表明,在-50~ 100℃温度范围内温度系数为2.93×10-5℃,电源抑制比达到-84.2 dB,电源电压在3.5~6.5 V之间均可实现2.5±0.0012 V的输出,是一种有效的基准电压实现方法。  相似文献   

9.
通过将具有高阶温度项的MOS管亚阈值区漏电流转换为电压,并与一阶温度补偿电压进行加权叠加,实现二阶温度补偿.采用高增益的运放和负反馈回路提高电源抑制能力,设计一种低温漂高电源电压抑制比带隙基准电压源.基于0.18μm CMOS工艺,完成电路设计与仿真、版图设计与后仿真.结果表明,在1.8 V的电源电压下,电路输出电压为1.22 V;在温度变化为-40~110℃时,温度系数为3.3 ppm/℃;低频电源电压抑制比为-96 dB@100 Hz;静态电流仅为33μA.  相似文献   

10.
基于0.18 um CMOS工艺技术,设计了一款结构简单的低温度系数的电压基准源.Spectre仿真显示,在供电电压为5V时,输出电压是1.20V;在-40℃到80℃温度范围内,温度系数可以达到3.47ppm/℃;在频率低于10KHz时,PSRR保持在54dB以下;总的输出噪声为7.304e-5V.  相似文献   

11.
一种新的CMOS带隙基准电压源设计   总被引:2,自引:0,他引:2  
设计了一种新的CMOS带隙基准电压源.通过采用差异电阻间温度系数的不同进行曲率补偿,利用运算放大器进行内部负反馈,设计出结构简单、低温漂、高电源抑制比的CMOS带隙基准电压源.仿真结果表明,在VDD=2 V时,电路具有4.5×10-6V/℃的温度特性和57 dB的直流电源抑制比,整个电路消耗电源电流仅为13μA.  相似文献   

12.
13.
一种二阶补偿的CMOS带隙基准电压源   总被引:4,自引:0,他引:4  
提出了一种通过沟道长度调制效应进行二阶温度曲率补偿的CMOS带隙基准电压源,并分析了这种结构实现二阶温度曲率补偿成立的条件。采用0.35 μm标准CMOS工艺库,在Cadence环境下进行仿真,在-50°~+120℃温度范围内,一阶曲率补偿的温度系数为9.5 ppm/℃,而运用二阶曲率补偿后该基准电压源具有2.7 ppm/℃的低温度系数。  相似文献   

14.
针对一阶温度补偿的基准电压源仍有较高的温度系数的问题,本文提出一种分段补偿的设计方法,以降低基准电压源输出电压随温度的漂移。利用带负电阻放大器的增益对温度敏感的特性产生一个随温度变化的电压信号,用该电压信号驱动一个PMOS管在3个温度段内对基准电路注入或抽取电流的方式进行分段补偿。仿真结果表明:当温度在-40~125℃范围内变化时,基准电压仅变化0.311mV,温度系数为1.89×10-6℃~(-1),电源抑制比在低频时为-90dB。该带隙基准源在温度为-15℃、34℃、76℃时,基准电压对温度的函数曲线的的曲率为0,在标准工艺下温漂系数较低。该研究可为ADC、线性稳压器、DC/DC转换器等电路提供高精度的基准电压。  相似文献   

15.
本文基于Brokaw基准电压源结构,设计了一种二阶温度补偿的带隙基准源。采用UMC 0.6um BCD工艺,实现-40100℃的温度范围下,相对温度系数为3.53ppm/℃。  相似文献   

16.
基于CSMC的0.5μm CMOS工艺库模型,设计了一种具有良好性能的CMOS带隙基准电压源电路,并且利用Cadence公司的Spectre仿真工具对电路进行了仿真。所设计电路产生的基准电压约为1.14 V,在-40℃到100℃的温度范围内所得到的温度系数为4.6 ppm/℃,电源抑制比在低频时为-107 dB。  相似文献   

17.
为消除运算放大器失调电压对带隙电压精度的影响,采用NPN型三极管产生ΔVbe,并设计全新的反馈环路结构产生了低压带隙电压.电路采用SMIC 0.18μm CMOS工艺实现,该新型低压带隙基准源设计输出电压为0.5V,温度系数为8ppm/℃,电源抑制比达到-130dB,并成功运用于16位高速ADC芯片中.  相似文献   

18.
基于0.6μm BICMOS(双极型互补金属氧化物半导体)工艺设计了一种具有分段曲率补偿的高精度带隙基准电压源.对该分段曲率补偿电路产生不同温度区间的正温度系数电流进行补偿,且所需的补偿支路可根据实际电路要求进行设定.基准核心电路采用无运算放大器结构,形成负反馈环路稳定输出电压.同时设计了预校准电路,提高了电源抑制比.利用cadence工具仿真结果表明,在-40~125℃范围内基准电压的温度系数仅为0.3×10-6/℃,电源抑制比达到-104dB.  相似文献   

19.
为降低传统双极结型晶体管(Bipolar Junction Transistor, BJT)型带隙基准源温度系数高的问题,提出了一种带有高阶曲率补偿的带隙基准电压源,极大降低了带隙基准源的温度系数.设计基于传统BJT型带隙基准电路,采用高阶曲率补偿电路对温度系数进行优化,并采用折叠式cascode运算放大器和自偏置cascode电流镜对输入电压范围进行优化.设计的带隙基准源具有低温度系数、高电源电压抑制比、结构简单的优点,是各类片上系统的优良选择.  相似文献   

20.
文章设计了一种应用于D/A转换器芯片中的带隙基准电压电路,在3 V工作电压下具有极低的温度系数,输出电压低于传统带隙基准电路.该电路改进了传统带隙基准电路,减小了运放失调和电路误差,通过电阻二次分压降低了基准输出电压.在SMIC 0.35 μm CMOS工艺下,使用Hspice进行了仿真.仿真结果表明:该基准的温度系数在-40~100 ℃的范围内仅为3.6×10-6 /℃;电源电压在2.7~3.3 V之间变化时,电源抑制比为52 dB.该文设计的带隙基准电压源完全符合设计要求,是一个性能良好的基准电路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号