共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
现有最好的视频压缩感知重构算法大都采用“预测- 残差重构”策略,可有效利用帧内和帧间的相关性获得较好的性能,但是残差重构均直接采用SPL 算法,忽略了残差信号自身的结构特征,限制了性能的进一步提升. 针对该问题,文中提出了一种基于预测残差结构特征的块分类重构算法,首先利用残差块观测值的平均能量对残差块进行分类,然后对不同类的残差块采用不同的重构算法. 仿真实验表明,用于运动较快的视频序列时,文中方案与SPL 算法相比可以获得更好的重构质量. 相似文献
3.
4.
由于信息技术的飞速发展,在实际的数据处理过程中,单个分类器往往不能满足:(1)要求越来越高的数据分类精度和运行速度;(2)更强的泛化性能;(3)有效地适用于大样本数据分类。将旋转森林算法(rotation-forest,ROF)与极限学习机(extreme learning machine,ELM)相结合,有效地解决了旋转森林算法中过拟合现象的发生;同时也提高了算法的分类性能。最后通过UCI数据集的实验验证表明,和传统的集成分类算法相比,算法R-ELM-C与Bagging、Adaboosting、Rotboost、ROF、ELM等相比,具有更好地分类性能、稳定性与泛化性能,同时也适合于大样本数据分类。 相似文献
5.
基于相似度的模糊坡位分类算法使用最小值算子来综合不同地形因子的相似度,忽略了不同的地形因子对不同坡位的影响程度的差异.该文使用随机森林算法分析地形因子与坡位类型之间的关系,计算出不同地形因子相对于各类坡位的重要性评分,并以此作为加权因子,通过加权因子原则,综合计算待分类位置与典型位置的相似度.结果显示,基于随机森林算法的分类准确度和Kappa系数分别达到了0.97和0.96,而基于最小值算子算法的分类准确度和Kappa系数分别为0.88和0.83.相比原有方法,新方法的分类准确度提高了0.09,Kappa系数提高了0.13,由此证明,使用本文提出的新方法进行模糊坡位分类,在一定程度上提高了坡位分类的效果. 相似文献
6.
提出基于粗糙集和随机森林算法辅助糖尿病并发症分类。首先,运用简化的分明矩阵法对属性约简,产生新的决策信息系统;其次,采用随机森林算法对该新信息系统生成随机森林,实现分类;最后,通过糖尿病并发症临床诊断数据子集测试。实验表明该方法有效性,并优于直接用随机森林算法分类。 相似文献
7.
随机森林算法是一种高度灵活且易于使用的机器学习算法,目前在遥感影像分类中应用广泛。为了验证其在城市土地覆盖分类中的效果,本文对河南省洛阳市局部城区进行了土地覆盖分类实验,将Landsat 8(OLI)遥感影像的光谱波段、光谱指数和纹理特征相结合,构成多种特征组合进行随机森林算法分类比较,选择分类效果最佳方案,并与支持向量机方法进行比较。后利用随机森林算法对该组合特征变量高维数据进行降维处理,得到优化特征方案。实验结果表明:采用多源特征组合的随机森林算法的土地利用分类效果最佳,总体精度为90.54%,Kappa系数为0.890,比支持向量机方法的分类精度提高了3.1%;降维处理后的特征方案与随机森林结合在保证分类结果拥有高准确度的同时,减少了运算时间,实现了土地覆被类型信息的高效获取。表明随机森林算法在城区土地覆盖分类上有很好的适用性与稳定性。 相似文献
8.
基于非平衡数据的随机森林分类算法改进 总被引:1,自引:0,他引:1
随机森林算法作为一种组合分类器有较好的分类性能,适合多样的分类环境。算法同样也存在一些缺陷,例如算法处理非平衡数据时不能很好地区分正类和负类。针对这一问题,通过对抽样结果增加约束条件来改进Bootstrap重抽样方法,减少抽样对非平衡性的影响,同时尽量保证算法的随机性。之后利用生成数据的非平衡系数给每棵决策树进行加权处理,提升对非平衡数据敏感的决策树在投票环节的话语权,从而提升整体算法对非平衡数据的分类性能。通过上述两种改进可以明显提高随机森林在决策树数量不足情况下的分类精度。 相似文献
9.
10.
11.
针对目前不平衡大数据分类算法分类效果较差的问题,提出基于随机森林模型的不平衡大数据分类算法。首先采用SVM(Support Vector Machine)支持向量机算法对不平衡大数据进行信息过滤,然后利用反k近邻法检测并消除离群点,通过增量主成分分析法去掉不平衡大数据中协方差矩阵存在的奇异性,并依据熵值法对其展开权重解析,进而提取不平衡大数据特征信息。将CART(Classification and Regression Trees)决策树当作不平衡大数据的基分类器,进而构建随机森林决策树分类器,最后将提取的不平衡大数据特征信息输入分类器中,实现不平衡大数据分类。实验结果表明,该算法对不平衡大数据的采样效果较好,并且分类精准度、稳定性和性能都较高。 相似文献
12.
针对现有方法在哈希函数构造过程中没有考虑数据的稀疏结构,提出了一种基于稀疏重构的哈希函数学习方法。利用相似点的l_(21)范数对重构系数进行了稀疏约束,以增强局部保持映射过程中的判别性,并构建拉普拉斯矩阵进行局部邻域关系的约束,在调和协方差矩阵和最小化数据的重构误差间建立了一种平衡机制。从特征所在的空间与经映射后的汉明空间的可判别性角度出发,对哈希函数构造过程中的内在要求和约束同时进行了考虑并综合权衡。采用公共图像检索数据集Caltech-256进行实验,实验结果表明:32位编码长度时,本文算法的检索精度比其他无监督的深度哈希算法至少提高了4.69%。 相似文献
13.
基于稀疏编码和多核学习的图像分类算法 总被引:1,自引:0,他引:1
提出了一种基于稀疏编码和多核学习的图像分类算法.首先从图像中提取Dense-SIFT(Dense Scale Invariant Feature Transform)和Dense-SURF(Dense Speeded Up Robust Feature)2种特征,使用稀疏编码对特征点进行处理,得到一系列高维向量,然后对这些高维向量应用max-pooling算法,将图像表示成单个向量.最后,使用改进的多核学习方法对这些向量进行分类,对于不同的特征,使用不同核的组合以达到最好的分类效果.实验结果表明,该算法作为词袋(BoW)模型的改进,能够提高分类准确率.
相似文献
14.
为了提高非平衡数据分类的准确性,采用随机森林算法用于数据分类,并结合鲸鱼优化算法对随机森林弱分类器权重进行优化求解,以增强随机森林算法对非平衡数据分类的适应性。首先,建立基于随机森林的非平衡数据分类模型。通过随机森林的多个决策树弱分类器进行分类,有效解决样本不均衡导致的分类困难问题。接着,采用鲸群优化算法对弱分类器权重进行优化求解,将分类准确率均值作为鲸群优化适应度函数,以提高弱分类器权重投票对最终分类结果的精度。最后,采用经过鲸群优化得到的随机森林模型进行非平衡数据分类。实验证明,通过合理设置鲸群优化算法参数,可以获得分类准确度更高的随机森林弱分类器权重,相较于常用非平衡数据分类算法,文中算法能够获得更优的分类性能。 相似文献
15.
高光谱数据具有光谱范围广,光谱分辨率高等优势,可以用于不同地物的分类识别,为近年来遥感领域的研究热点。采用随机森林算法对机载高光谱数据进行了地物分类识别研究,首先选取不同种类的地物样本,并对每类样本打上类别标签,每个像素包含的波段数即为样本的特征数,送入随机森林分类器进行训练;然后将训练好的分类器对待分类的高光谱影像数据进行分类,待分类的数据初始化为统一的类别标签;并根据袋外数据自变量的扰动对分类精度的影响,计算不同波段特征对分类效果的重要性系数。实验采用C++语言结合Intel Open CV计算机视觉库,编写了高光谱影像分类识别程序,对机载AISA高光谱传感器获取的甘肃省张掖市农村与城市影像数据进行分类,结果表明本文算法具有较高分类精度和可靠性。 相似文献
16.
为解决专利文档的自动化分类,根据机械领域专利文本的特点,提出了一种基于卷积神经网络与随机森林的机械专利文本分类模型;该模型应用卷积神经网络作为有监督的文本特征提取器,结合随机森林作为分类器,面向机械领域专利文本进行专利文本分类。该模型被应用在包含96类的107 302份英文机械专利文档的数据集上。实验结果表明,该模型相比k近邻、Na6ve Bayes、随机森林等经典机器学习算法在准确率、召回率以及查全率方面均有显著提高。 相似文献
17.
组稀疏学习在图像去噪中显示出巨大的潜力,但现有方法仅从图像块级别考虑含噪图像的非局部自相似性,影响了强噪声图像的重建质量.文中在组稀疏复原模型中引入组稀疏残差和全变分正则化约束,将含噪图像复原问题转化为多尺度图像块匹配和减小组稀疏残差;基于干净图像的组稀疏系数预估和多尺度图像块匹配,提出了自适应图像复原迭代算法,以提升组稀疏学习算法的图像去噪和精细结构复原能力.实验结果表明,文中算法能更好地保留图像的细节纹理,减少过平滑和伪影现象,在强噪声图像复原的主、客观综合评价上优于BM3D、WNNM等标杆去噪算法. 相似文献
18.
利用随机森林算法,基于历史地面实况观测数据,构建随机森林1~6 h风场预报模型,并用2018年的地面实况观测数据对预报模型进行检验分析.结果 表明,随机森林算法在风场预报中有较好的泛化能力,对地面10m风场有较好的预报水平,在1~6 h的预报中,预报风场与实况风场比较接近,各预报时效风速的年平均绝对误差为1.0 m/s... 相似文献
19.
《山西大同大学学报(自然科学版)》2019,(5)
机器学习在近几年得到了迅猛的发展,其中随机森林(Random Forest)在决策树的基础上演变出来的一种机器学习方法,利用其可以进行数据建模,分类,预测等。探索了随机森林算法在数据预测上的应用,基于一个泰坦尼克乘客数据集,预测泰坦尼克号乘客的命运(是否生存)。此数据集包含了将近80%乘客的信息和生存状态,包含1 309个样本,每个样本包含14个属性。实验验证了随机森林算法在受试者工作特征曲线等方面表现较好,具有一定的参考性和可拓展性。 相似文献
20.
基于随机森林的文本分类模型研究 总被引:3,自引:0,他引:3
随着WWW的迅猛发展,文本分类成为处理和组织大量文档数据的关键技术.随机森林模型是决策树的集成,并且由一随机向量决定决策树的构造.当森林中的决策树的数目增大,随机森林的泛化误差将趋向一个上界.将随机森林模型应用于文本分类,在Reuter21578数据集上的实验表明,分类效果比较好,性能比较稳定,将共同C4.5,KNN,SM0,SVM4种典型的文本分类器进行了比较,结果显示它的分类性能胜于CA.5,同KNN,SMO和SVM方法相当. 相似文献