首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
在980nm近红外激光激发下,Tm3+/Yb3+共掺的新型氟氧化物玻璃呈现了强烈的上转换蓝光、红光和近红外光发射.随着Tm3+和Yb3+含量的增加,上转换蓝光和红光的强度都先增大后减小,它们的最佳掺杂物质的量分数分别为0.06%和3%.对上转换发光强度和激发光功率的关系进行了研究,研究表明上转换蓝光和红光发射都是三光子的吸收过程,近红外光的发射是两光子吸收过程.  相似文献   

2.
研究卟啉材料的激光防护特性.基于卟啉-蒽化合物的分子结构特点及其光子吸收截面计算公式,研究了卟啉-蒽化合物的双光子和三光子吸收特性.结果表明,卟啉-蒽化合物具有很好的非线性光学吸收效应,其光学吸收谱可以覆盖很宽的波长范围,这种非线性光学吸收效应可以用于抵御不同波长激光武器的攻击.  相似文献   

3.
By using scanning near-field optical microscopy (SNOM), HeLa cells in apoptosis process are imaged with a higher optical resolution beyond the diffraction limit. Since SNOM provides both topographic and transmitted light intensity information of a cell, it can correlate the structural characteristics and optical properties with the spatial position of the apoptotic cells. Wavelength imaging by using near-field spectroscopy shows that there is a great difference in light propagation and absorption in the cell. This unique technique can be applied to the super high resolution imaging of different components in the cell. The observations by near-field optical imaging and near-field spectroscopy indicate an inhomogeneous aggregation of the inner structure in the apoptotic HeLa cells and the change of transmission intensity of light with the apoptosis status.  相似文献   

4.
Gmachl C  Sivco DL  Colombelli R  Capasso F  Cho AY 《Nature》2002,415(6874):883-887
The fundamental mechanism behind laser action leads in general only to narrowband, single-wavelength emission. Several approaches for achieving spectrally broadband laser action have been put forward, such as enhancing the optical feedback in the wings of the gain spectrum, multi-peaked gain spectra, and the most favoured technique at present, ultrashort pulse excitation. Each of these approaches has drawbacks, such as a complex external laser cavity configuration, a non-flat optical gain envelope function, or an inability to operate in continuous mode, respectively. Here we present a monolithic, mid-infrared 'supercontinuum' semiconductor laser that has none of these drawbacks. We adopt a quantum cascade configuration, where a number of dissimilar intersubband optical transitions are made to cooperate in order to provide broadband optical gain from 5 to 8 microm wavelength. Laser action with a Fabry-Pérot spectrum covering all wavelengths from 6 to 8 microm simultaneously is demonstrated with this approach. Lasers that emit light over such an extremely wide wavelength range are of interest for applications as varied as terabit optical data communications or ultra-precision metrology and spectroscopy.  相似文献   

5.
研究了TeO2-BaO-Eu2O3玻璃中Eu离子掺杂浓度对其发光性质的影响.分别用TU-1901 UV-VIS紫外可见光谱仪和F-2500荧光光谱仪测量样品的吸收光谱和发射光谱与激发光谱.结果表明:所有的样品在330 nm左右有一个很强的吸收带;Eu-O电荷迁移带的强度与Eu离子掺杂浓度密切相关;相对于基质吸收,Eu离子的本征吸收强度随掺杂离子浓度的提高而增强;在394 nm光的激发下,Eu离子发光主要位于594 nm和615nm左右,相对于5D0→7F1,5D0→7F2跃迁发射受Eu离子掺杂浓度的影响.  相似文献   

6.
以稀土氧化物、硝酸铝为原料,采用溶胶-凝胶法合成了钇铝石榴石(Y3Al5O12,YAG)纳米晶粉体。采用X射线衍射(XRD)确定了1200℃煅烧后的晶体粉为纯YAG结构,无杂质相,晶体尺寸约为90 nm;该粉体在波长为980 nm的半导体激光器激发下发射出中心波长为547 mm的绿色上转换荧光,对应于Ho离子的^5F4→^5I8的跃迁。发光强度和激发功率关系的研究揭示其为双光子过程,能量传递和激发态吸收是上转换发光的主要机制。  相似文献   

7.
With the realization of faster telecommunication data rates and an expanding interest in ultrafast chemical and physical phenomena, it has become important to develop techniques that enable simple measurements of optical waveforms with subpicosecond resolution. State-of-the-art oscilloscopes with high-speed photodetectors provide single-shot waveform measurement with 30-ps resolution. Although multiple-shot sampling techniques can achieve few-picosecond resolution, single-shot measurements are necessary to analyse events that are rapidly varying in time, asynchronous, or may occur only once. Further improvements in single-shot resolution are challenging, owing to microelectronic bandwidth limitations. To overcome these limitations, researchers have looked towards all-optical techniques because of the large processing bandwidths that photonics allow. This has generated an explosion of interest in the integration of photonics on standard electronics platforms, which has spawned the field of silicon photonics and promises to enable the next generation of computer processing units and advances in high-bandwidth communications. For the success of silicon photonics in these areas, on-chip optical signal-processing for optical performance monitoring will prove critical. Beyond next-generation communications, silicon-compatible ultrafast metrology would be of great utility to many fundamental research fields, as evident from the scientific impact that ultrafast measurement techniques continue to make. Here, using time-to-frequency conversion via the nonlinear process of four-wave mixing on a silicon chip, we demonstrate a waveform measurement technology within a silicon-photonic platform. We measure optical waveforms with 220-fs resolution over lengths greater than 100 ps, which represent the largest record-length-to-resolution ratio (>450) of any single-shot-capable picosecond waveform measurement technique. Our implementation allows for single-shot measurements and uses only highly developed electronic and optical materials of complementary metal-oxide-semiconductor (CMOS)-compatible silicon-on-insulator technology and single-mode optical fibre. The mature silicon-on-insulator platform and the ability to integrate electronics with these CMOS-compatible photonics offer great promise to extend this technology into commonplace bench-top and chip-scale instruments.  相似文献   

8.
Zaks B  Liu RB  Sherwin MS 《Nature》2012,483(7391):580-583
An intense laser field can remove an electron from an atom or molecule and pull the electron into a large-amplitude oscillation in which it repeatedly collides with the charged core it left behind. Such recollisions result in the emission of very energetic photons by means of high-order-harmonic generation, which has been observed in atomic and molecular gases as well as in a bulk crystal. An exciton is an atom-like excitation of a solid in which an electron that is excited from the valence band is bound by the Coulomb interaction to the hole it left behind. It has been predicted that recollisions between electrons and holes in excitons will result in a new phenomenon: high-order-sideband generation. In this process, excitons are created by a weak near-infrared laser of frequency f(NIR). An intense laser field at a much lower frequency, f(THz), then removes the electron from the exciton and causes it to recollide with the resulting hole. New emission is predicted to occur as sidebands of frequency f(NIR)?+?2nf(THz), where n is an integer that can be much greater than one. Here we report the observation of high-order-sideband generation in semiconductor quantum wells. Sidebands are observed up to eighteenth order (+18f(THz), or n = 9). The intensity of the high-order sidebands decays only weakly with increasing sideband order, confirming the non-perturbative nature of the effect. Sidebands are strongest for linearly polarized terahertz radiation and vanish when the terahertz radiation is circularly polarized. Beyond their fundamental scientific significance, our results suggest a new mechanism for the ultrafast modulation of light, which has potential applications in terabit-rate optical communications.  相似文献   

9.
本文应用密度矩阵方程对四能级耦合跃迁进行了计算,得出了三光子吸收过程所占的几率与光强的三次方成正比的具体结果;在三光子吸收过程中,可以消除Doppler效应而得到高分辨率光谱,文中又计算了无Doppler三光子跃迁几率。  相似文献   

10.
1 Introduction Two-photon absorption (TPA) and excitation (TPE) spectroscopes have received considerable attentions because of the potential for using TPE for biological imaging,optical data storage,three-dimensional micro-fabrication and two-photodynamic therapy.However,its implementation in practical uses is limited because of very small two-photon absorption cross section.In order to overcome this problem,great efforts have been directed toward the identification of the molecular design strategies fo...  相似文献   

11.
The demand for ever-increasing density of information storage and speed of manipulation has triggered an intense search for ways to control the magnetization of a medium by means other than magnetic fields. Recent experiments on laser-induced demagnetization and spin reorientation use ultrafast lasers as a means to manipulate magnetization, accessing timescales of a picosecond or less. However, in all these cases the observed magnetic excitation is the result of optical absorption followed by a rapid temperature increase. This thermal origin of spin excitation considerably limits potential applications because the repetition frequency is limited by the cooling time. Here we demonstrate that circularly polarized femtosecond laser pulses can be used to non-thermally excite and coherently control the spin dynamics in magnets by way of the inverse Faraday effect. Such a photomagnetic interaction is instantaneous and is limited in time by the pulse width (approximately 200 fs in our experiment). Our finding thus reveals an alternative mechanism of ultrafast coherent spin control, and offers prospects for applications of ultrafast lasers in magnetic devices.  相似文献   

12.
Subwavelength-diameter silica wires for low-loss optical wave guiding   总被引:5,自引:0,他引:5  
Tong L  Gattass RR  Ashcom JB  He S  Lou J  Shen M  Maxwell I  Mazur E 《Nature》2003,426(6968):816-819
Silica waveguides with diameters larger than the wavelength of transmitted light are widely used in optical communications, sensors and other applications. Minimizing the width of the waveguides is desirable for photonic device applications, but the fabrication of low-loss optical waveguides with subwavelength diameters remains challenging because of strict requirements on surface roughness and diameter uniformity. Here we report the fabrication of subwavelength-diameter silica 'wires' for use as low-loss optical waveguides within the visible to near-infrared spectral range. We use a two-step drawing process to fabricate long free-standing silica wires with diameters down to 50 nm that show surface smoothness at the atomic level together with uniformity of diameter. Light can be launched into these wires by optical evanescent coupling. The wires allow single-mode operation, and have an optical loss of less than 0.1 dB mm(-1). We believe that these wires provide promising building blocks for future microphotonic devices with subwavelength-width structures.  相似文献   

13.
可见光敏化铕发光配合物研究进展   总被引:1,自引:0,他引:1  
稀土离子的敏化发光研究一直是有机稀土发光配合物领域的热点问题。在活体生物成像和荧光免疫分析领域,与紫外光激发相比,可见光激发具有可有效降低背景光的干扰和减少对生物组织的损伤等优点,因此,可见光激发有机稀土配合物的发光研究受到了稀土探针制备方面研究人员的广泛关注。在上述配合物中,三价铕离子配合物可获得较高的发光量子产率,且其特征发射为红光,因此,这类配合物在成像和免疫分析领域更加引起了研究者的极大兴趣。本文就近年来可见光敏化有机铕配合物的发光机理、敏化配体的类型、配合物的发光性能等方面进行了综述,分析了不同的敏化配体对三价铕离子配合物发光性质的影响,指出了要从如何制备敏化配体方面来探索创造具有优异发光性能的有机铕配合物。  相似文献   

14.
Lasers are usually described by their output frequency and intensity. However, laser operation is an inherently nonlinear process. Knowledge about the dynamic behaviour of lasers is thus of great importance for detailed understanding of laser operation and for improvement in performance for applications. Of particular interest is the time domain within the coherence time of the optical transition. This time is determined by the oscillation period of the laser radiation and thus is very short. Rigorous quantum mechanical models predict interesting effects like quantum beats, lasing without inversion, and photon echo processes. As these models are based on quantum coherence and interference, knowledge of the phase within the optical cycle is of particular interest. Laser radiation has so far been measured using intensity detectors, which are sensitive to the square of the electric field. Therefore information about the sign and phase of the laser radiation is lost. Here we use an electro-optic detection scheme to measure the amplitude and phase of stimulated radiation, and correlate this radiation directly with an input probing pulse. We have applied this technique to semiconductor quantum cascade lasers, which are coherent sources operating at frequencies between the optical (>100 THz) and electronic (<0.5 THz) ranges. In addition to the phase information, we can also determine the spectral gain, the bias dependence of this gain, and obtain an insight into the evolution of the laser field.  相似文献   

15.
基于里德堡原子的量子干涉效应,对微波电场的溯源进行测量.该方法使用室温铷原子气室作为探头,通过对双光子电磁诱导透明、三光子电磁诱导透明和三光子电磁诱导吸收效应的Autler-Townes分裂进行理论分析,并讨论了原子散粒噪声的测量极限.该方法不仅适用于微波电场的可溯源、自校准测量,还可被用于微波电场的亚波长成像以及矢量测量,将为进一步实现原子微波探头的小型化和集成化提供参考.  相似文献   

16.
本文提出一种具有安全特性的压缩全息成像技术来解决当下存在于全息成像方面的安全问题.该方法可以在全息成像场景过程中实现光学加密、光学隐藏和光学压缩功能,能够在保护图像信息安全的同时,实现对数据的压缩.该方法将主对象引入经典Mach-Zehnder干涉仪的参考路径中,实现参考波的空间调制,形成参考光场的二维空间分布.之后,对象信息被加密并隐藏到菲涅耳域中目标光束和参考光束的相干成像过程中的主目标信息中,实现对图像的安全保护;同时,安全物体全息图被进一步压缩采样,单像素检测器只需记录较少数据,就可表示原始成像对象.该技术大大减少了对象的数据采集量,可以在纯光系统下安全地获得压缩对象,这是全息成像方法的一大突破,也有望突破全息影像在3DTV、医学诊断、实时全息TV等领域中,影像数据量受限的瓶颈.凭借全光学手段实现光学安全的可行性,本文提出的方法对实现全光网络、近地和星际激光通信链路等方面也有重要参考意义.  相似文献   

17.
镧系元素因其特殊的4f电子层结构而具有优异的光谱特性,如尖锐的线状谱带和相对较长的激发态寿命,这大大提高了其光学成像性能,是一类新型的成像元素.但其电子跃迁几率低,表现出较差的发光强度及较低的吸光效率,这对镧系发光材料作为生物成像探针的发展有一定的阻碍.近些年,研究者们通过设计镧系材料组成与结构,对其发光性能进行调控,使其成像性能得到了极大的提升.该文分别综述了镧系配合物、镧系纳米粒子作为成像探针的发光原理、材料类型及生物应用.  相似文献   

18.
禹忠  韦玮  陈烽  侯洵 《西安交通大学学报》2004,38(10):1068-1071
提出了一种基于Douglas离散格式的有限差光束传播法的数值计算方法.采用该方法对实验中所获得的吸收光谱和激发光谱进行Lorentzian叠加拟合,并结合多能级速率方程计算出掺铒光波导放大器(EDWA)中光的场传输强度分布,从而得到掺铒光波导放大器的增益和吸收频谱特性.数值分析结果表明,选用泵浦光波长为980nm的泵浦光源比1480nm的可以获得更大的泵浦效率,同时合理增加EDWA的泵浦长度和掺杂离子数密度可以获得更大的信号增益.由于考虑了协同上转换和交叉弛豫效应,该算法能够对高掺杂的EDWA进行较宽频谱的分析.  相似文献   

19.
Color tuning and luminescence enhancement are predominant challenges for improving the performance of white light emitting diodes(LEDs) toward commercial application. In this paper, a novel promising Ba_(2-x)Ca_xSiO_(4-y)N_(2/3y):Eu~(2+) tphosphors with tunable and enhanced luminescence for phosphors converted LEDs(pc-LEDs) have been successfully synthesized by a direct gas-reduction nitridation method. The effects of Ca and N doping on the phase purity, morphology and optical properties of Ba_(2-x)Ca_xSiO_(4-y)N_(2/3y):Eu~(2+) tphosphors were also systematically investigated. The optical results show that Ba_(2-x)Ca_xSiO_(4-y)N_(2/3y):Eu~(2+) tphosphors can be actively excited over a broad range from 250 to430 nm. With the adding of different concentrations of Ca~(2+) tions in phosphors, the emission color wavelength can be tailored from 501 to 441 nm by a 375 nm NUV LED excitation source. Furthermore, it has been found that the emission and absorption of Ba_(2-x)Ca_xSiO_(4-y)N_(2/3y) tphosphor can be significantly improved when N~(3-) ions were introduced into the host lattices. The intensity of Ba_(1.5)Ca_(0.5)SiO_(4-y)N_(2/3y):Eu~(2+) tphosphor was 3.4 times higher than the phosphor without N doping. The fabrication and characterization of pc-LEDs using Ba_(2-x)Ca_xSiO_(4-y)N_(2/3y):Eu~(2+) tphosphors-silica gel as the coating layer onto 375 nm-emitting In Ga N LED caps demonstrated the superior optical and current tolerant properties,making it a promising and competitive candidate for commercial utilization in white LED applications.  相似文献   

20.
采用原位复合的方法制备出厚度为20μm的聚乙烯醇(PVA)与ZnS纳米微粒复合的薄膜,利用透射电镜(TEM)和X射线衍射(XRD)研究薄膜样品的微结构性能,证明已制备出立方晶相的针状ZnS纳米晶.用Z-扫描技术研究ZnS/PVA纳米复合薄膜的非线性光学性质,发现该薄膜对532 nm纳秒脉冲激光表现出较强的非线性吸收效应,而且非线性吸收强度随入射光强的增加而减少.该非线性吸收主要由纳米ZnS的三光子吸收引起,并伴随弱饱和吸收现象发生.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号