首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Multiple sclerosis is a demyelinating neurodegenerative disease with a strong genetic component. Previous genetic risk studies have failed to identify consistently linked regions or genes outside of the major histocompatibility complex on chromosome 6p. We describe allelic association of a polymorphism in the gene encoding the interleukin 7 receptor alpha chain (IL7R) as a significant risk factor for multiple sclerosis in four independent family-based or case-control data sets (overall P = 2.9 x 10(-7)). Further, the likely causal SNP, rs6897932, located within the alternatively spliced exon 6 of IL7R, has a functional effect on gene expression. The SNP influences the amount of soluble and membrane-bound isoforms of the protein by putatively disrupting an exonic splicing silencer.  相似文献   

2.
3.
To identify risk variants for multiple myeloma, we conducted a genome-wide association study of 1,675 individuals with multiple myeloma and 5,903 control subjects. We identified risk loci for multiple myeloma at 3p22.1 (rs1052501 in ULK4; odds ratio (OR) = 1.32; P = 7.47 × 10(-9)) and 7p15.3 (rs4487645, OR = 1.38; P = 3.33 × 10(-15)). In addition, we observed a promising association at 2p23.3 (rs6746082, OR = 1.29; P = 1.22 × 10(-7)). Our study identifies new genomic regions associated with multiple myeloma risk that may lead to new etiological insights.  相似文献   

4.
Interleukin 7 (IL-7) and its receptor, formed by IL-7Rα (encoded by IL7R) and γc, are essential for normal T-cell development and homeostasis. Here we show that IL7R is an oncogene mutated in T-cell acute lymphoblastic leukemia (T-ALL). We find that 9% of individuals with T-ALL have somatic gain-of-function IL7R exon 6 mutations. In most cases, these IL7R mutations introduce an unpaired cysteine in the extracellular juxtamembrane-transmembrane region and promote de novo formation of intermolecular disulfide bonds between mutant IL-7Rα subunits, thereby driving constitutive signaling via JAK1 and independently of IL-7, γc or JAK3. IL7R mutations induce a gene expression profile partially resembling that provoked by IL-7 and are enriched in the T-ALL subgroup comprising TLX3 rearranged and HOXA deregulated cases. Notably, IL7R mutations promote cell transformation and tumor formation. Overall, our findings indicate that IL7R mutational activation is involved in human T-cell leukemogenesis, paving the way for therapeutic targeting of IL-7R-mediated signaling in T-ALL.  相似文献   

5.
The few loci associated with multiple sclerosis (MS) are all related to immune function. We report a GWA study identifying a new locus replicated in 2,679 cases and 3,125 controls. An rs10492972[C] variant located in the KIF1B gene was associated with MS with an odds ratio of 1.35 (P = 2.5 x 10(-10)). KIF1B is a neuronally expressed gene plausibly implicated in the irreversible axonal loss characterizing MS in the long term.  相似文献   

6.
Using an Affymetrix 10K SNP array to screen for gene copy number changes in breast cancer, we detected a single-gene amplification of the ESR1 gene, which encodes estrogen receptor alpha, at 6q25. A subsequent tissue microarray analysis of more than 2,000 clinical breast cancer samples showed ESR1 amplification in 20.6% of breast cancers. Ninety-nine percent of tumors with ESR1 amplification showed estrogen receptor protein overexpression, compared with 66.6% cancers without ESR1 amplification (P < 0.0001). In 175 women who had received adjuvant tamoxifen monotherapy, survival was significantly longer for women with cancer with ESR1 amplification than for women with estrogen receptor-expressing cancers without ESR1 amplification (P = 0.023). Notably, we also found ESR1 amplification in benign and precancerous breast diseases, suggesting that ESR1 amplification may be a common mechanism in proliferative breast disease and a very early genetic alteration in a large subset of breast cancers.  相似文献   

7.
Hepatocellular carcinoma (HCC) is a major cause of death worldwide. Here, we provide evidence that the ligand-dependent nuclear receptor co-regulator Trim24 (also known as Tif1alpha) functions in mice as a liver-specific tumor suppressor. In Trim24-null mice, hepatocytes fail to execute proper cell cycle withdrawal during the neonatal-to-adult transition and continue to cycle in adult livers, becoming prone to a continuum of cellular alterations that progress toward metastatic HCC. Using pharmacological approaches, we show that inhibition of retinoic acid signaling markedly reduces hepatocyte proliferation in Trim24-/- mice. We further show that deletion of a single retinoic acid receptor alpha (Rara) allele in a Trim24-null background suppresses HCC development and restores wild-type expression of retinoic acid-responsive genes in the liver, thus demonstrating that in this genetic background Rara expresses an oncogenic activity correlating with a dysregulation of the retinoic acid signaling pathway. Our results not only provide genetic evidence that Trim24 and Rara co-regulate hepatocarcinogenesis in an antagonistic manner but also suggest that aberrant activation of Rara is deleterious to liver homeostasis.  相似文献   

8.
A C-->G nucleotide transition in exon 4 of PTPRC (encoding protein-tyrosine phosphatase receptor-type C, also known as CD45) was recently reported to be genetically associated with the development of multiple sclerosis (MS). We performed an extensive evaluation of this polymorphism using large family-based and case-control comparisons. Overall, we observed no evidence of genetic association between the PTPRC polymorphism and MS susceptibility or disease course.  相似文献   

9.
10.
Hereditary diffuse leukoencephalopathy with spheroids (HDLS) is an autosomal-dominant central nervous system white-matter disease with variable clinical presentations, including personality and behavioral changes, dementia, depression, parkinsonism, seizures and other phenotypes. We combined genome-wide linkage analysis with exome sequencing and identified 14 different mutations affecting the tyrosine kinase domain of the colony stimulating factor 1 receptor (encoded by CSF1R) in 14 families with HDLS. In one kindred, we confirmed the de novo occurrence of the mutation. Follow-up sequencing identified an additional CSF1R mutation in an individual diagnosed with corticobasal syndrome. In vitro, CSF-1 stimulation resulted in rapid autophosphorylation of selected tyrosine residues in the kinase domain of wild-type but not mutant CSF1R, suggesting that HDLS may result from partial loss of CSF1R function. As CSF1R is a crucial mediator of microglial proliferation and differentiation in the brain, our findings suggest an important role for microglial dysfunction in HDLS pathogenesis.  相似文献   

11.
Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system. It is widely accepted that a dysregulated immune response against brain resident antigens is central to its yet unknown pathogenesis. Although there is evidence that the development of MS has a genetic component, specific genetic factors are largely unknown. Here we investigated the role of a point mutation in the gene (PTPRC) encoding protein-tyrosine phosphatase, receptor-type C (also known as CD45) in the heterozygous state in the development of MS. The nucleotide transition in exon 4 of the gene locus interferes with mRNA splicing and results in altered expression of CD45 isoforms on immune cells. In three of four independent case-control studies, we demonstrated an association of the mutation with MS. We found the PTPRC mutation to be linked to and associated with the disease in three MS nuclear families. In one additional family, we found the same variant CD45 phenotype, with an as-yet-unknown origin, among the members affected with MS. Our findings suggest an association of the mutation in PTPRC with the development of MS in some families.  相似文献   

12.
13.
The association of variants in complement factors H and B with age-related macular degeneration has led to more intense genetic and functional analysis of the complement pathway. We identify a nonsynonymous coding change in complement factor 3 that is strongly associated with risk of age-related macular degeneration in a large case-control sample.  相似文献   

14.
Age-related macular degeneration (AMD) is the most common form of irreversible blindness in developed countries. Variants in the factor H gene (CFH, also known as HF1), which encodes a major inhibitor of the alternative complement pathway, are associated with the risk for developing AMD. Here we test the hypothesis that variation in genes encoding other regulatory proteins of the same pathway is associated with AMD. We screened factor B (BF) and complement component 2 (C2) genes, located in the major histocompatibility complex class III region, for genetic variation in two independent cohorts comprising approximately 900 individuals with AMD and approximately 400 matched controls. Haplotype analyses identify a statistically significant common risk haplotype (H1) and two protective haplotypes. The L9H variant of BF and the E318D variant of C2 (H10), as well as a variant in intron 10 of C2 and the R32Q variant of BF (H7), confer a significantly reduced risk of AMD (odds ratio = 0.45 and 0.36, respectively). Combined analysis of the C2 and BF haplotypes and CFH variants shows that variation in the two loci can predict the clinical outcome in 74% of the affected individuals and 56% of the controls. These data expand and refine our understanding of the genetic risk for AMD.  相似文献   

15.
Hermansky-Pudlak syndrome (HPS; MIM 203300) is a genetically heterogeneous disorder characterized by oculocutaneous albinism, prolonged bleeding and pulmonary fibrosis due to abnormal vesicle trafficking to lysosomes and related organelles, such as melanosomes and platelet dense granules. In mice, at least 16 loci are associated with HPS, including sandy (sdy; ref. 7). Here we show that the sdy mutant mouse expresses no dysbindin protein owing to a deletion in the gene Dtnbp1 (encoding dysbindin) and that mutation of the human ortholog DTNBP1 causes a novel form of HPS called HPS-7. Dysbindin is a ubiquitously expressed protein that binds to alpha- and beta-dystrobrevins, components of the dystrophin-associated protein complex (DPC) in both muscle and nonmuscle cells. We also show that dysbindin is a component of the biogenesis of lysosome-related organelles complex 1 (BLOC-1; refs. 9-11), which regulates trafficking to lysosome-related organelles and includes the proteins pallidin, muted and cappuccino, which are associated with HPS in mice. These findings show that BLOC-1 is important in producing the HPS phenotype in humans, indicate that dysbindin has a role in the biogenesis of lysosome-related organelles and identify unexpected interactions between components of DPC and BLOC-1.  相似文献   

16.
Hypertonia, which results from motor pathway defects in the central nervous system (CNS), is observed in numerous neurological conditions, including cerebral palsy, stroke, spinal cord injury, stiff-person syndrome, spastic paraplegia, dystonia and Parkinson disease. Mice with mutation in the hypertonic (hyrt) gene exhibit severe hypertonia as their primary symptom. Here we show that hyrt mutant mice have much lower levels of gamma-aminobutyric acid type A (GABA(A)) receptors in their CNS, particularly the lower motor neurons, than do wild-type mice, indicating that the hypertonicity of the mutants is likely to be caused by deficits in GABA-mediated motor neuron inhibition. We cloned the responsible gene, trafficking protein, kinesin binding 1 (Trak1), and showed that its protein product interacts with GABA(A) receptors. Our data implicate Trak1 as a crucial regulator of GABA(A) receptor homeostasis and underscore the importance of hyrt mice as a model for studying the molecular etiology of hypertonia associated with human neurological diseases.  相似文献   

17.
The genetic basis of most conditions characterized by congenital contractures is largely unknown. Here we show that mutations in the embryonic myosin heavy chain (MYH3) gene cause Freeman-Sheldon syndrome (FSS), one of the most severe multiple congenital contracture (that is, arthrogryposis) syndromes, and nearly one-third of all cases of Sheldon-Hall syndrome (SHS), the most common distal arthrogryposis. FSS and SHS mutations affect different myosin residues, demonstrating that MYH3 genotype is predictive of phenotype. A structure-function analysis shows that nearly all of the MYH3 mutations are predicted to interfere with myosin's catalytic activity. These results add to the growing body of evidence showing that congenital contractures are a shared outcome of prenatal defects in myofiber force production. Elucidation of the genetic basis of these syndromes redefines congenital contractures as unique defects of the sarcomere and provides insights about what has heretofore been a poorly understood group of disorders.  相似文献   

18.
19.
Genetic susceptibility to multiple sclerosis is associated with genes of the major histocompatibility complex (MHC), particularly HLA-DRB1 and HLA-DQB1 (ref. 1). Both locus and allelic heterogeneity have been reported in this genomic region. To clarify whether HLA-DRB1 itself, nearby genes in the region encoding the MHC or combinations of these loci underlie susceptibility to multiple sclerosis, we genotyped 1,185 Canadian and Finnish families with multiple sclerosis (n = 4,203 individuals) with a high-density SNP panel spanning the genes encoding the MHC and flanking genomic regions. Strong associations in Canadian and Finnish samples were observed with blocks in the HLA class II genomic region (P < 4.9 x 10(-13) and P < 2.0 x 10(-16), respectively), but the strongest association was with HLA-DRB1 (P < 4.4 x 10(-17)). Conditioning on either HLA-DRB1 or the most significant HLA class II haplotype block found no additional block or SNP association independent of the HLA class II genomic region. This study therefore indicates that MHC-associated susceptibility to multiple sclerosis is determined by HLA class II alleles, their interactions and closely neighboring variants.  相似文献   

20.
Age-related macular degeneration (AMD) is a common, late-onset disease with seemingly typical complexity: recurrence ratios for siblings of an affected individual are three- to sixfold higher than in the general population, and family-based analysis has resulted in only modestly significant evidence for linkage. In a case-control study drawn from a US-based population of European descent, we have identified a previously unrecognized common, noncoding variant in CFH, the gene encoding complement factor H, that substantially increases the influence of this locus on AMD, and we have strongly replicated the associations of four other previously reported common alleles in three genes (P values ranging from 10(-6) to 10(-70)). Despite excellent power to detect epistasis, we observed purely additive accumulation of risk from alleles at these genes. We found no differences in association of these loci with major phenotypic categories of advanced AMD. Genotypes at these five common SNPs define a broad spectrum of interindividual disease risk and explain about half of the classical sibling risk of AMD in our study population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号