首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ye Y  Lukinova N  Fortini ME 《Nature》1999,398(6727):525-529
Presenilin proteins have been implicated both in developmental signalling by the cell-surface protein Notch and in the pathogenesis of Alzheimer's disease. Loss of presenilin function leads to Notch/lin-12-like mutant phenotypes in Caenorhabditis elegans and to reduced Notch1 expression in the mouse paraxial mesoderm. In humans, presenilins that are associated with Alzheimer's disease stimulate overproduction of the neurotoxic 42-amino-acid beta-amyloid derivative (Abeta42) of the amyloid-precursor protein APP. Here we describe loss-of-function mutations in the Drosophila Presenilin gene that cause lethal Notch-like phenotypes such as maternal neurogenic effects during embryogenesis, loss of lateral inhibition within proneural cell clusters, and absence of wing margin formation. We show that presenilin is required for the normal proteolytic production of carboxy-terminal Notch fragments that are needed for receptor maturation and signalling, and that genetically it acts upstream of both the membrane-bound form and the activated nuclear form of Notch. Our findings provide evidence for the existence of distinct processing sites or modifications in the extracellular domain of Notch. They also link the role of presenilin in Notch signalling to its effect on amyloid production in Alzheimer's disease.  相似文献   

2.
Developing tissues and growing tumours produce vascular endothelial growth factors (VEGFs), leading to the activation of the corresponding receptors in endothelial cells. The resultant angiogenic expansion of the local vasculature can promote physiological and pathological growth processes. Previous work has uncovered that the VEGF and Notch pathways are tightly linked. Signalling triggered by VEGF-A (also known as VEGF) has been shown to induce expression of the Notch ligand DLL4 in angiogenic vessels and, most prominently, in the tip of endothelial sprouts. DLL4 activates Notch in adjacent cells, which suppresses the expression of VEGF receptors and thereby restrains endothelial sprouting and proliferation. Here we show, by using inducible loss-of-function genetics in combination with inhibitors in vivo, that DLL4 protein expression in retinal tip cells is only weakly modulated by VEGFR2 signalling. Surprisingly, Notch inhibition also had no significant impact on VEGFR2 expression and induced deregulated endothelial sprouting and proliferation even in the absence of VEGFR2, which is the most important VEGF-A receptor and is considered to be indispensable for these processes. By contrast, VEGFR3, the main receptor for VEGF-C, was strongly modulated by Notch. VEGFR3 kinase-activity inhibitors but not ligand-blocking antibodies suppressed the sprouting of endothelial cells that had low Notch signalling activity. Our results establish that VEGFR2 and VEGFR3 are regulated in a highly differential manner by Notch. We propose that successful anti-angiogenic targeting of these receptors and their ligands will strongly depend on the status of endothelial Notch signalling.  相似文献   

3.
Drosophila thoracic mechanosensory bristles originate from cells that are singled out from 'proneural' groups of competent epithelial cells. Neural competence is restricted to individual sensory organ precursors (SOPs) by Delta/Notch-mediated 'lateral inhibition', whereas other cells in the proneural field adopt an epidermal fate. The precursors of the large macrochaetes differentiate separately from individual proneural clusters that comprise about 20-30 cells or as heterochronic pairs from groups of more than 100 cells, whereas the precursors of the small regularly spaced microchaetes emerge from even larger proneural fields. This indicates that lateral inhibition might act over several cell diameters; it was difficult to reconcile with the fact that the inhibitory ligand Delta is membrane-bound until the observation that SOPs frequently extend thin processes offered an attractive hypothesis. Here we show that the extension of these planar filopodia--a common attribute of wing imaginal disc cells--is promoted by Delta and that their experimental suppression reduces Notch signalling in distant cells and increases bristle density in large proneural groups, showing that these membrane specializations mediate long-range lateral inhibition.  相似文献   

4.
Motor neuron columnar fate imposed by sequential phases of Hox-c activity   总被引:1,自引:0,他引:1  
Dasen JS  Liu JP  Jessell TM 《Nature》2003,425(6961):926-933
The organization of neurons into columns is a prominent feature of central nervous system structure and function. In many regions of the central nervous system the grouping of neurons into columns links cell-body position to axonal trajectory, thus contributing to the establishment of topographic neural maps. This link is prominent in the developing spinal cord, where columnar sets of motor neurons innervate distinct targets in the periphery. We show here that sequential phases of Hox-c protein expression and activity control the columnar differentiation of spinal motor neurons. Hox expression in neural progenitors is established by graded fibroblast growth factor signalling and translated into a distinct motor neuron Hox pattern. Motor neuron columnar fate then emerges through cell autonomous repressor and activator functions of Hox proteins. Hox proteins also direct the expression of genes that establish motor topographic projections, thus implicating Hox proteins as critical determinants of spinal motor neuron identity and organization.  相似文献   

5.
Dale JK  Maroto M  Dequeant ML  Malapert P  McGrew M  Pourquie O 《Nature》2003,421(6920):275-278
The segmented aspect of the vertebrate body plan first arises through the sequential formation of somites. The periodicity of somitogenesis is thought to be regulated by a molecular oscillator, the segmentation clock, which functions in presomitic mesoderm cells. This oscillator controls the periodic expression of 'cyclic genes', which are all related to the Notch pathway. The mechanism underlying this oscillator is not understood. Here we show that the protein product of the cyclic gene lunatic fringe (Lfng), which encodes a glycosyltransferase that can modify Notch activity, oscillates in the chick presomitic mesoderm. Overexpressing Lfng in the paraxial mesoderm abolishes the expression of cyclic genes including endogenous Lfng and leads to defects in segmentation. This effect on cyclic genes phenocopies inhibition of Notch signalling in the presomitic mesoderm. We therefore propose that Lfng establishes a negative feedback loop that implements periodic inhibition of Notch, which in turn controls the rhythmic expression of cyclic genes in the chick presomitic mesoderm. This feedback loop provides a molecular basis for the oscillator underlying the avian segmentation clock.  相似文献   

6.
Notch signaling is one of the most important pathways mediating cell determination and differentiation.In this study, the roles of Notch signal in the regulation of osteogenic differentiation of human bone marrow mesenchymal stem cells (hMSCs) were investigated. The expression of Notch1, Jaggedl and DTXI detected by reverse transcrip-tion polymerase chain reaction (RT-PCR) suggested that Notch signal might exhibit a physiological regulatory role in the differentiation of MSCs. Constitutive expression of the intracellular domain of Notchl (ICN), the active form of Notchl protein, can activate Notch signal in cells without ligands‘ binding, hMSCs were isolated, expanded, and infected with retrovirus carrying green fluorescent protein (GFP) gene or ICN. Overexpression of ICN in hMSCs resulted in enhanced osteogenic differentiation induced by dexamethasone (Dex), which was characterized by an increase of cellular alkaline phosphatase (ALP) activity and calcium deposition. These results indicate that Notch stimulates differentiation of MSCs into osteoblasts.  相似文献   

7.
8.
Fringe is a glycosyltransferase that modifies Notch   总被引:36,自引:0,他引:36  
Notch receptors function in highly conserved intercellular signalling pathways that direct cell-fate decisions, proliferation and apoptosis in metazoans. Fringe proteins can positively and negatively modulate the ability of Notch ligands to activate the Notch receptor. Here we establish the biochemical mechanism of Fringe action. Drosophila and mammalian Fringe proteins possess a fucose-specific beta1,3 N-acetylglucosaminyltransferase activity that initiates elongation of O-linked fucose residues attached to epidermal growth factor-like sequence repeats of Notch. We obtained biological evidence that Fringe-dependent elongation of O-linked fucose on Notch modulates Notch signalling by using co-culture assays in mammalian cells and by expression of an enzymatically inactive Fringe mutant in Drosophila. The post-translational modification of Notch by Fringe represents a striking example of modulation of a signalling event by differential receptor glycosylation and identifies a mechanism that is likely to be relevant to other signalling pathways.  相似文献   

9.
Notch signalling is a key intercellular communication mechanism that is essential for cell specification and tissue patterning, and which coordinates critical steps of blood vessel growth. Although subtle alterations in Notch activity suffice to elicit profound differences in endothelial behaviour and blood vessel formation, little is known about the regulation and adaptation of endothelial Notch responses. Here we report that the NAD(+)-dependent deacetylase SIRT1 acts as an intrinsic negative modulator of Notch signalling in endothelial cells. We show that acetylation of the Notch1 intracellular domain (NICD) on conserved lysines controls the amplitude and duration of Notch responses by altering NICD protein turnover. SIRT1 associates with NICD and functions as a NICD deacetylase, which opposes the acetylation-induced NICD stabilization. Consequently, endothelial cells lacking SIRT1 activity are sensitized to Notch signalling, resulting in impaired growth, sprout elongation and enhanced Notch target gene expression in response to DLL4 stimulation, thereby promoting a non-sprouting, stalk-cell-like phenotype. In vivo, inactivation of Sirt1 in zebrafish and mice causes reduced vascular branching and density as a consequence of enhanced Notch signalling. Our findings identify reversible acetylation of the NICD as a molecular mechanism to adapt the dynamics of Notch signalling, and indicate that SIRT1 acts as rheostat to fine-tune endothelial Notch responses.  相似文献   

10.
Morimoto M  Takahashi Y  Endo M  Saga Y 《Nature》2005,435(7040):354-359
The serially segmented (metameric) structures of vertebrates are based on somites that are periodically formed during embryogenesis. A 'clock and wavefront' model has been proposed to explain the underlying mechanism of somite formation, in which the periodicity is generated by oscillation of Notch components (the clock) in the posterior pre-somitic mesoderm (PSM). This temporal periodicity is then translated into the segmental units in the 'wavefront'. The wavefront is thought to exist in the anterior PSM and progress backwards at a constant rate; however, there has been no direct evidence as to whether the levels of Notch activity really oscillate and how such oscillation is translated into a segmental pattern in the anterior PSM. Here, we have visualized endogenous levels of Notch1 activity in mice, showing that it oscillates in the posterior PSM but is arrested in the anterior PSM. Somite boundaries formed at the interface between Notch1-activated and -repressed domains. Genetic and biochemical studies indicate that this interface is generated by suppression of Notch activity by mesoderm posterior 2 (Mesp2) through induction of the lunatic fringe gene (Lfng). We propose that the oscillation of Notch activity is arrested and translated in the wavefront by Mesp2.  相似文献   

11.
12.
During vertebrate embryo development, the breaking of the initial bilateral symmetry is translated into asymmetric gene expression around the node and/or in the lateral plate mesoderm. The earliest conserved feature of this asymmetric gene expression cascade is the left-sided expression of Nodal, which depends on the activity of the Notch signalling pathway. Here we present a mathematical model describing the dynamics of the Notch signalling pathway during chick embryo gastrulation, which reveals a complex and highly robust genetic network that locally activates Notch on the left side of Hensen's node. We identify the source of the asymmetric activation of Notch as a transient accumulation of extracellular calcium, which in turn depends on left-right differences in H+/K+-ATPase activity. Our results uncover a mechanism by which the Notch signalling pathway translates asymmetry in epigenetic factors into asymmetric gene expression around the node.  相似文献   

13.
You LR  Lin FJ  Lee CT  DeMayo FJ  Tsai MJ  Tsai SY 《Nature》2005,435(7038):98-104
Arteries and veins are anatomically, functionally and molecularly distinct. The current model of arterial-venous identity proposes that binding of vascular endothelial growth factor to its heterodimeric receptor--Flk1 and neuropilin 1 (NP-1; also called Nrp1)--activates the Notch signalling pathway in the endothelium, causing induction of ephrin B2 expression and suppression of ephrin receptor B4 expression to establish arterial identity. Little is known about vein identity except that it involves ephrin receptor B4 expression, because Notch signalling is not activated in veins; an unresolved question is how vein identity is regulated. Here, we show that COUP-TFII (also known as Nr2f2), a member of the orphan nuclear receptor superfamily, is specifically expressed in venous but not arterial endothelium. Ablation of COUP-TFII in endothelial cells enables veins to acquire arterial characteristics, including the expression of arterial markers NP-1 and Notch signalling molecules, and the generation of haematopoietic cell clusters. Furthermore, ectopic expression of COUP-TFII in endothelial cells results in the fusion of veins and arteries in transgenic mouse embryos. Thus, COUP-TFII has a critical role in repressing Notch signalling to maintain vein identity, which suggests that vein identity is under genetic control and is not derived by a default pathway.  相似文献   

14.
Clements WK  Kim AD  Ong KG  Moore JC  Lawson ND  Traver D 《Nature》2011,474(7350):220-224
Haematopoietic stem cells (HSCs) are a self-renewing population of cells that continuously replenish all blood and immune cells during the lifetime of an individual. HSCs are used clinically to treat a wide array of diseases, including acute leukaemias and congenital blood disorders, but obtaining suitable numbers of cells and finding immune-compatible donors remain serious problems. These difficulties have led to an interest in the conversion of embryonic stem cells or induced pluripotent stem cells into HSCs, which is not possible using current methodologies. To accomplish this goal, it is critical to understand the native mechanisms involved in the specification of HSCs during embryonic development. Here we demonstrate in zebrafish that Wnt16 controls a novel genetic regulatory network required for HSC specification. Non-canonical signalling by Wnt16 is required for somitic expression of the Notch ligands deltaC (dlc) and deltaD (dld), and these ligands are, in turn, required for the establishment of definitive haematopoiesis. Notch signalling downstream of Dlc and Dld is earlier than, and distinct from, known cell-autonomous requirements for Notch, strongly suggesting that novel Notch-dependent relay signal(s) induce the first HSCs in parallel to other established pathways. Our results demonstrate that somite-specific gene expression is required for the production of haemogenic endothelium.  相似文献   

15.
采用RT-PCR方法,分别从人食管鳞癌及正常食管组织中扩增 Notch1基因,结果表明Notch1基因在人食管鳞癌及正常食管组织中均有表达.此外,通过免疫组织化学方法检测不同病理特征的35例食管鳞癌、16例原位癌及35例癌周正常食管粘膜上皮组织Notch1蛋白表达的变化,结果显示:Notch1蛋白在正常食管粘膜上皮组织和原位癌中的阳性率分别为82.9%、68.7%,二者无显著性差异(P>0.05),但均显著高于食管鳞癌组织37.1%(P<0.05),食管鳞癌Notch1蛋白的低表达与肿瘤的直径、分期和发生部位无关(P>0.05),但与淋巴结转移有关(P<0.05).这表明在正常食管粘膜上皮组织中Notch1蛋白高表达,而在食管癌鳞中Notch1蛋白呈现低表达或不表达.该研究为进一步探明Notch1基因的表达对食管癌细胞的发生、发展的影响奠定了良好的基础.  相似文献   

16.
17.
Siekmann AF  Lawson ND 《Nature》2007,445(7129):781-784
Recent evidence indicates that growing blood-vessel sprouts consist of endothelial cells with distinct cell fates and behaviours; however, it is not clear what signals determine these sprout cell characteristics. Here we show that Notch signalling is necessary to restrict angiogenic cell behaviour to tip cells in developing segmental arteries in the zebrafish embryo. In the absence of the Notch signalling component Rbpsuh (recombining binding protein suppressor of hairless) we observed excessive sprouting of segmental arteries, whereas Notch activation suppresses angiogenesis. Through mosaic analysis we find that cells lacking Rbpsuh preferentially localize to the terminal position in developing sprouts. In contrast, cells in which Notch signalling has been activated are excluded from the tip-cell position. In vivo time-lapse analysis reveals that endothelial tip cells undergo a stereotypical pattern of proliferation and migration during sprouting. In the absence of Notch, nearly all sprouting endothelial cells exhibit tip-cell behaviour, leading to excessive numbers of cells within segmental arteries. Furthermore, we find that flt4 (fms-related tyrosine kinase 4, also called vegfr3) is expressed in segmental artery tip cells and becomes ectopically expressed throughout the sprout in the absence of Notch. Loss of flt4 can partially restore normal endothelial cell number in Rbpsuh-deficient segmental arteries. Finally, loss of the Notch ligand dll4 (delta-like 4) also leads to an increased number of endothelial cells within segmental arteries. Together, these studies indicate that proper specification of cell identity, position and behaviour in a developing blood-vessel sprout is required for normal angiogenesis, and implicate the Notch signalling pathway in this process.  相似文献   

18.
Fringe forms a complex with Notch   总被引:4,自引:0,他引:4  
Ju BG  Jeong S  Bae E  Hyun S  Carroll SB  Yim J  Kim J 《Nature》2000,405(6783):191-195
The Fringe protein of Drosophila and its vertebrate homologues function in boundary determination during pattern formation. Fringe has been proposed to inhibit Serrate-Notch signalling but to potentiate Delta-Notch signalling. Here we show that Fringe and Notch form a complex through both the Lin-Notch repeats and the epidermal growth factor repeats 22-36 (EGF22-36) of Notch when they are co-expressed. The Abruptex59b (Ax59b) and AxM1 mutations, which are caused by missense mutations in EGF repeats 24 and 25, respectively, abolish the Fringe-Notch interaction through EGF22-36, whereas the l(1)N(B) mutation in the third Lin-Notch repeat of Notch abolishes the interaction through Lin-Notch repeats. Ax mutations also greatly affect the Notch response to ectopic Fringe in vivo. Results from in vitro protein mixing experiments and subcellular colocalization experiments indicate that the Fringe-Notch complex may form before their secretion. These findings explain how Fringe acts cell-autonomously to modulate the ligand preference of Notch and why the Fringe-Notch relationship is conserved between phyla and in the development of very diverse structures.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号