首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 86 毫秒
1.
基于证据理论的电机故障诊断方法研究   总被引:10,自引:0,他引:10  
在DS证据理论的基础上,结合模糊集合论,给出了多传感器数据融合一般化方法,并将其应用于电机故障诊断。通过数据融合诊断结果与单传感器诊断结果的比较,说明多传感器数据融合能明显提高故障诊断的准确率。  相似文献   

2.
为了能够从多方面反映电机系统状态,实现对电机故障模式的自动识别与准确诊断,将信息融合技术与神经网络相结合,建立电机故障诊断系统。在数据融合级上,将故障特征量进行分类处理,然后,采用多层神经网络进行故障特征级融合与电机故障的局部诊断,获得彼此独立的证据,再运用DempserShafer(D-S)证据理论融合算法对各证据进行融合,最终,实现对电机故障的准确诊断。诊断测试试验证明:该诊断系统提高了电机故障诊断的精度,并能满足诊断的实时性要求。  相似文献   

3.
为了能够从多方面反映电机系统状态,实现对电机故障模式的自动识别与准确诊断,将数据融合技术与神经网络相结合,建立电机故障诊断系统。在数据融合级上,将故障特征量进行分类处理,然后采用多层神经网络进行故障特征级融合与电机故障的局部诊断,获得彼此独立的证据,再运用D-S(Dempser Shafer)证据理论融合算法对各证据进行融合,最终实现对电机故障的准确诊断。诊断测试试验证明,该诊断系统提高了电机故障诊断的精度,并能满足诊断的实时性要求。  相似文献   

4.
一种改进的DS多传感器信息融合故障诊断方法   总被引:1,自引:0,他引:1  
DS证据推理理论由于其能很好融合多传感器数据和区分不确定与不知道的问题,因而被广泛应用于故障诊断过程中。但由于其不能很好的处理冲突项,在应用中受到限制。为解决此问题,通过建立传感器间支持信任矩阵,重新赋予加权系数,经过仿真表明此方法很好的解决了DS理论中的冲突问题,提高了故障诊断正确率。  相似文献   

5.
6.
证据分类策略能够很好地避免冲突证据融合问题。借鉴证据分类的思想,定义证据-属性支持度、分类门限、证据可信度,将证据分类,保证同一类别的证据具有较好的一致性。在同一类别内采用D-S进行证据合成,并根据各类证据的个数及证据不确定度给出每类证据合成结果的权重,并采用加权合成方法给后最终的合成结果。  相似文献   

7.
为了比较和研究证据理论中Dempster,Yager,PCR5三种组合规则的融合效果,构建多源传感器故障诊断识别框架,利用已有实验数据分别对基于3种组合规则融合多传感器信息诊断单一故障的过程进行仿真,并采用信息熵作为不确定性量度.结合融合后的基本概率分配函数和故障判定结果对各组合规则的融合效果进行定量比较、分析和评价.结果表明:3种组合规则均能够融合多传感器信息对所选的单一故障实现诊断,其中,Dempster组合规则的诊断结果具有最低的不确定性,Yager组合规则的效果相对较差.该研究对证据理论组合规则在冲突不明显时的融合效果进行了定量分析,是对已有定性分析研究的验证和补充.  相似文献   

8.
一种改进的有效冲突证据融合方法   总被引:1,自引:0,他引:1  
针对经典证据理论Dempster规则无法有效合成冲突证据的问题,结合现有改进规则方法和改进模型两类方法的优势,提出一种改进的冲突证据融合处理方法。引入证据平均值的概念,通过计算各证据与证据平均值之间的距离来确定可信度作为权重,以区分各证据间的相关性和差异;再加权平均进行合成获得融合结果;并通过比较验证了该方法不仅有效,且在收敛速度和可靠性上更加优越。  相似文献   

9.
D-S(Dempster-Shafer)证据理论是处理不确定信息的有效方法,但仍然存在着证据之间的冲突问题。引入麦克斯韦电磁力理论,将证据理论中不同证据之间存在冲突与融合的问题转换为电磁力理论下的电磁斥力与电磁引力问题,该转换提出了一种新的证据间距离的量化方法。其中,在传统的冲突系数中引入了证据距离因素,并提出了一种新的证据冲突表示方法,提高了冲突系数的灵敏度。仿真结果表明,该方法在故障诊断中的识别率比传统方法更高,证明了本文所提方法的正确性和有效性。  相似文献   

10.
基于信息融合技术的电网故障诊断方法   总被引:3,自引:0,他引:3  
利用采样数据间的相互关系,以电网元件相关先验概率为基础,通过D-S(Dempster-Shafer)证据理论对检测的故障信息进行融合,获取缺失数据发生的概率;同时,将概率的概念引入Petri网建模,将获取的状态概率值代人概率Petri网故障诊断模型进行故障的诊断,以解决电网故障诊断过程中的信息不完备问题.实例证明,该方法可扩充电网故障的诊断范围.保障电力系统安全运行.  相似文献   

11.
基于信息融合技术的大型水轮发电机故障诊断   总被引:11,自引:0,他引:11  
为了能够从多方面反映水轮发电机组系统状态,实现对水轮发电机组故障模式的自动识别与准确诊断,将信息融合技术应用于水轮发电机组故障诊断系统。根据故障特征量将故障进行分类处理,采用多个并联的BP子神经网络进行水轮发电机组故障的局部诊断,获得彼此独立的证据,再运用D-S证据理论融合算法对各证据进行融合,最终实现对水轮发电机组故障的准确诊断。诊断测试实验证明:采用该诊断系统可有效地提高诊断可信度,减少诊断的不确定性。  相似文献   

12.
针对噪声环境下滚动轴承故障难以诊断的问题,提出一种基于深度学习融合网络的轴承故障识别新方法。该方法首先对轴承振动信号进行一定程度的随机损坏,并将加噪后的数据输入卷积降噪自编码器(convolutional denoising autoencoder,CDAE)中对网络进行训练,目的是降低信号中的噪声干扰并提取浅层特征;然后,利用深度信念网络(deep belief network,DBN)学习深层特征并建立轴承状态识别模型,输出故障识别结果。在融合模型中,将卷积降噪自编码器作为网络的第一层以增强网络的抗干扰能力,提高故障的识别精度。使用凯斯西储大学(CWRU)滚动轴承数据对所提模型进行验证,结果表明提出的融合模型在噪声环境下能够较好地实现轴承的故障状态识别。  相似文献   

13.
针对噪声环境下滚动轴承故障难以诊断的问题,提出一种基于深度学习融合网络的轴承故障识别新方法。该方法首先对轴承振动信号进行一定程度的随机损坏,并将加噪后的数据输入卷积降噪自编码器(convolutional denoising autoencoder, CDAE)中对网络进行训练,目的是降低信号中的噪声干扰并提取浅层特征;然后,利用深度信念网络(deep belief network, DBN)学习深层特征并建立轴承状态识别模型,输出故障识别结果。在融合模型中,将卷积降噪自编码器作为网络的第一层以增强网络的抗干扰能力,提高故障的识别精度。使用凯斯西储大学(CWRU)滚动轴承数据对所提模型进行验证,结果表明提出的融合模型在噪声环境下能够较好地实现轴承的故障状态识别。  相似文献   

14.
多源信息融合故障诊断方法研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
简述多源信息融合与故障诊断的关系,指出多源信息融合故障诊断的一般方法。从融合结构和融合算法的角度对多源信息融合故障诊断方法进行了分类阐述,并分别说明其诊断原理与研究现状;指出信息融合故障诊断按融合结构可分为层次结构信息、多级信息和组合神经网络的融合故障诊断,按融合算法分为基于贝叶斯理论、DS证据理论、模糊集理论、粗糙集理论和人工神经网络的融合故障诊断。最后展望了信息融合故障诊断方法的未来发展趋势。  相似文献   

15.
针对传统故障诊断方法只利用单一参数对复杂系统进行诊断具有信息不完备和不确定性的问题,提出了一种基于PCA和D-S证据理论的多传感器信息融合故障诊断方法.该方法基于PCA对信息融合的多维数据进行降维处理,并利用证据理论实现对非精确信息的正确推理,解决了信息融合数据的组合爆炸问题,从而得到精确的诊断结果.将该方法应用于火电机组的汽包锅炉给水控制系统故障诊断中,实现了对控制系统中主要参数的故障检测,有效提高了控制系统工作的可靠性.  相似文献   

16.
基于电机定子电流的齿轮故障诊断方法   总被引:1,自引:0,他引:1  
齿轮故障诊断一般采用振动信号进行故障特征提取,但振动诊断法不便于安装传感器,易受环境和噪声影响.电机本身具有传感器的特性,定子相电流等信号能够反映负载转矩的变化.因此,针对由电机驱动的齿轮传动系统,提出了一种基于电机定子相电流分析的齿轮无损故障诊断方法.推导了电机定子电流如何反应负载转矩的特性,并分析了齿轮正常与故障状态下定子电流的频谱特征,发现可通过观察边频带的出现来判断齿轮发生局部式故障.通过Matlab对故障诊断原理进行了仿真验证,在实验平台上结合频谱分析成功检测出了齿轮断齿故障.  相似文献   

17.
针对电力系统继电保护故障,利用概率Petri网对电力系统进行建模,获取有效的故障信息,并运用DS(Dempster-Shafer)证据理论对信息进行融合,得出诊断结果.针对传统D-S证据理论在处理冲突证据时会存在结果与源证据相悖的问题,在加权平均法的基础上提出一种改进的融合方法,根据各个证据到平均证据的距离与证据权重大小成反比的关系,计算每个证据的权重,再进行加权平均,最后利用D-S组合规则进行迭代计算.与传统方法相比,本文方法拥有更好的融合效果和更高的效率.仿真结果验证了改进方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号