首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
It is hypothesized that de Broglie’s ‘matter waves’ provide a dynamical basis for Minkowski spacetime in an antisubstantivalist or relational account. The relativity of simultaneity is seen as an effect of the de Broglie oscillation together with a basic relativity postulate, while the dispersion relation from finite rest mass gives rise to the differentiation of spatial and temporal axes. Thus spacetime is seen as not fundamental, but rather as emergent from the quantum level. A result by Solov’ev which demonstrates that time is not an applicable concept at the quantum level is adduced in support of this claim. Finally, it is noted that de Broglie waves can be seen as the “bridge of becoming” discussed by (2005).  相似文献   

3.
The formalism of abstracted quantum mechanics is applied in a model of the generalized Liar Paradox. Here, the Liar Paradox, a consistently testable configuration of logical truth properties, is considered a dynamic conceptual entity in the cognitive sphere (Aerts, Broekaert, &; Smets, [Foundations of Science 1999, 4, 115–132; International Journal of Theoretical Physics, 2000, 38, 3231–3239]; Aerts and colleagues[Dialogue in Psychology, 1999, 10; Proceedings of Fundamental Approachs to Consciousness, Tokyo ’99; Mind in Interaction]. Basically, the intrinsic contextuality of the truth-value of the Liar Paradox is appropriately covered by the abstracted quantum mechanical approach. The formal details of the model are explicited here for the generalized case. We prove the possibility of constructing a quantum model of the m-sentence generalizations of the Liar Paradox. This includes (i) the truth–falsehood state of the m-Liar Paradox can be represented by an embedded 2m-dimensional quantum vector in a (2m) m -dimensional complex Hilbert space, with cognitive interactions corresponding to projections, (ii) the construction of a continuous ‘time’ dynamics is possible: typical truth and falsehood value oscillations are described by Schrödinger evolution, (iii) Kirchoff and von Neumann axioms are satisfied by introduction of ‘truth-value by inference’ projectors, (iv) time invariance of unmeasured state.  相似文献   

4.
Founding our analysis on the Geneva-Brussels approach to the foundations of physics, we provide a clarification and classification of the key concept of observation. An entity can be observed with or without a scope. In the second case, the observation is a purely non-invasive discovery process; in the first case, it is a purely invasive process, which can involve either creation or destruction aspects. An entity can also be observed with or without a full control over the observational process. In the latter case, the observation can be described by a symmetry breaking mechanism, through which a specific deterministic observational process is selected among a number of potential ones, as explained in Aerts’ hidden measurement approach. This is what is called a product test, or product observation, whose consequences are that outcomes can only be predicted in probabilistic terms, as it is the case in typical quantum measurements. We also show that observations can be about intrinsic (stable) properties of the observed entity, or about relational (ephemeral) properties between the observer and observed entities; also, they can be about intermediate properties, neither purely classical, nor purely quantum. Our analysis allows us to propose a general conceptual characterization of quantum measurements, as observational processes involving three aspects: (1) product observations, (2) pure creation aspects and (3) ephemeral relational properties. We also discuss the important concept of non-spatiality and emphasize some of the differences and similarities between quantum and classical/relativistic observations.  相似文献   

5.
Scholars concerned with the foundations of quantum mechanics (QM) usually think that contextuality (hence nonobjectivity of physical properties, which implies numerous problems and paradoxes) is an unavoidable feature of QM which directly follows from the mathematical apparatus of QM. Based on some previous papers on this issue, we criticize this view and supply a new informal presentation of the extended semantic realism (ESR) model which embodies the formalism of QM into a broader mathematical formalism and reinterprets quantum probabilities as conditional on detection rather than absolute. Because of this reinterpretation a hidden variables theory can be constructed which justifies the assumptions introduced in the ESR model and proves its objectivity. When applied to special cases the ESR model settles long-standing conflicts (it reconciles Bell’s inequalities with QM), provides a general framework in which previous results obtained by other authors (as local interpretations of the GHZ experiment) are recovered and explained, and supports an interpretation of quantum logic which avoids the introduction of the problematic notion of quantum truth.  相似文献   

6.
We present a cognitive psychology experiment where participants were asked to select pairs of spatial directions that they considered to be the best example of Two different wind directions. Data are shown to violate the CHSH version of Bell’s inequality with the same magnitude as in typical Bell-test experiments with entangled spins. Wind directions thus appear to be conceptual entities connected through meaning, in human cognition, in a similar way as spins appear to be entangled in experiments conducted in physics laboratories. This is the first part of a two-part article. In the second part (Aerts et al. in Found Sci, 2017) we present a symmetrized version of the same experiment for which we provide a quantum modeling of the collected data in Hilbert space.  相似文献   

7.
Why Axiomatize?     
Axiomatization is uncommon outside mathematics, partly for being often viewed as embalming, partly because the best-known axiomatizations have serious shortcomings, and partly because it has had only one eminent champion, namely David Hilbert (Math Ann 78:405–415, 1918). The aims of this paper are (a) to describe what will be called dual axiomatics, for it concerns not just the formalism, but also the meaning (reference and sense) of the key concepts; and (b) to suggest that every instance of dual axiomatics presupposes some philosophical view or other. To illustrate these points, a theory of solidarity will be crafted and axiomatized, and certain controversies in both classical and quantum physics, as well as in the philosophy of mind, will be briefly discussed. The upshot of this paper is that dual axiomatics, unlike the purely formal axiomatics favored by the structuralists school, is not a luxury but a tool helping resolve some scientific controversies.  相似文献   

8.
We argue that the distinction between framework and interaction theories should be taken carefully into consideration when dealing with the philosophical implications of fundamental theories in physics. In particular, conclusions concerning the nature of reality can only be consistently derived from assessing the ontological and epistemic purport of both types of theories. We put forward an epistemic form of realism regarding framework theories, such as Quantum Field Theory. The latter, indeed, informs us about the general properties of quantum fields, laying the groundwork for interaction theories. Yet, concerning interaction theories, we recommend a robust form of ontological realism regarding the entities whose existence is assumed by these theories. As an application, we refer to the case of the Standard Model, so long as it has proved to successfully inform us about the nature of various sorts of fundamental particles making up reality. In short, although we acknowledge that both framework and interaction theories partake in shaping our science-based view of reality, and that neither would do by itself the work we expect them to accomplish together, our proposal for a coherent ontology of fundamental entities advances a compromise between two forms of realism about theories in each case.  相似文献   

9.
10.
In this paper we will propose an empirical analysis of spatial and temporal boundaries. Unlike other proposals, which deal mainly with the commonsense level of the subject, we will ground our explication on well-established scientific practice and language. In this way we show how to reconsider in an innovative way questions such as the distinction between the bona fide boundaries and the fiat boundaries, the thickness and the ownership of the boundaries. At the same time we propose a division between ex mensura boundaries and qui vulgo dicuntur boundaries. What is it, therefore, that divides the atmosphere from the water? [Leonardo da Vinci, Notebooks]   相似文献   

11.
12.
The traditional “realist” conception of physics, according to which human concepts, laws and theories can grasp the essence of a reality in our absence, seems incompatible with quantum formalism and it most fruitful interpretation. The proof rests on the violation by quantum mechanical formalism of some fundamental principles of the classical ontology. We discuss if the conception behind Einstein’s idea of a reality in our absence, could be still maintained and at which price. We conclude that quantum mechanical formalism is not formulated on those terms, leaving for a separated paper the discussion about the terms in which it could be formulated and the onto-epistemological implications it might have.  相似文献   

13.
In the first half of this two-part article (Aerts et al. in Found Sci. doi: 10.1007/s10699-017-9528-9, 2017b), we analyzed a cognitive psychology experiment where participants were asked to select pairs of directions that they considered to be the best example of Two Different Wind Directions, and showed that the data violate the CHSH version of Bell’s inequality, with same magnitude as in typical Bell-test experiments in physics. In this second part, we complete our analysis by presenting a symmetrized version of the experiment, still violating the CHSH inequality but now also obeying the marginal law, for which we provide a full quantum modeling in Hilbert space, using a singlet state and suitably chosen product measurements. We also address some of the criticisms that have been recently directed at experiments of this kind, according to which they would not highlight the presence of genuine forms of entanglement. We explain that these criticisms are based on a view of entanglement that is too restrictive, thus unable to capture all possible ways physical and conceptual entities can connect and form systems behaving as a whole. We also provide an example of a mechanical model showing that the violations of the marginal law and Bell inequalities are generally to be associated with different mechanisms.  相似文献   

14.
An epistemological interpretation of quantum mechanics hinges on the claim that the distinctive features of quantum mechanics can be derived from some distinctive features of an observational basis. Old and new variations of this theme are listed. The program has a limited success in non-relativistic quantum mechanics. The crucial issue is how far it can be extended to quantum field theory without introducing significant ontological postulates. A C*-formulation covers algebraic quantum field theory, but not the standard model. Julian Schwinger’s anabatic methodology extended a strict measurement-based formulation of quantum mechanics through field theory. His extension also excluded the quark hypothesis and the standard model. Quarks and local gauge invariance are postulates that go beyond the limits of an epistemological interpretation of quantum mechanics. The ontological significance ascribed to these advances depends on the role accorded ontology.
Edward MacKinnonEmail:
  相似文献   

15.
16.
According to Vázquez and Liz (Found Sci 16(4): 383–391, 2011), Points of View (PoV) can be considered in two different ways. On the one hand, they can be explained following the model of propositional attitudes. This model assumes that the internal structure of a PoV is constituted by a subject, a set of contents, and a set of relations between the subject and those contents. On the other hand, we can analyze points of view taking as a model the notions of location and access. If we choose to follow the second approach, instead of the first one, the internal structure of a PoV is not directly addressed, and the emphasized features of PoV are related to the function that PoV are intended to have. That is, PoV are directly identified by their role and they can solely be understood as ways of accessing the world that bring some kind of perspective about it. Having this in mind, we would like to propose a notation that explains how to understand such access as a sort of models (that can allow the creation of concepts), independently of whether the precise PoV under consideration is impersonal or non-impersonal, its kind of content, and its subjective or objective character. First, we will present an account of some previous approaches to the study of points of view. Then, we will analyze what kind of structure the world is assumed to posses and how the access to it is possible. Third, we will develop a notation that explains PoV as qualitative dimensions by means of which it is possible to valuate objects and states of the world.  相似文献   

17.
This article deals with the aesthetics of the art documentary of the 1940s and 1950s, which can be considered as the Golden Age of the genre. Prior to the breakthrough of television in Europe, which would usurp and standardize the art documentary, cinematic reproductions of artworks resulted in experimental shorts that were highly self-reflexive. These films became visual laboratories to investigate the tensions between movement and stasis, the two- and three-dimensional, and the real and the artificial—a film on art was self-consciously presented as an art film. Focusing on La Leggenda di Sant’Orsola (1948) by Luciano Emmer and Le Monde de Paul Delvaux (1946) by Henri Storck, this article also investigates how the animation of the static image by the film medium relates to Surrealist practices.  相似文献   

18.
Syntactic and structural models specify relationships between their constituents but cannot show what outcomes their interaction would produce over time in the world. Simulation consists in iterating the states of a model, so as to produce behaviour over a period of simulated time. Iteration enables us to trace the implications and outcomes of inference rules and other assumptions implemented in the models that make up a theory. We apply this method to experiments which we treat as models of the particular aspects of reality they are designed to investigate. Scientific experiments are constantly designed and re-designed in the context of implementation and use. They mediate between theoretical understanding and the practicalities of engaging with the empirical and social world. In order to model experiments we need to identify and represent features that all experiments have in common. We treat these features as parameters of a general model of experiment so that by varying these parameters different types of experiment can be modelled.
D. C. GoodingEmail:
  相似文献   

19.
Measurements of p variables for n samples are collected into a n×p matrix X, where the samples belong to one of k groups. The group means are separated by Mahalanobis distances. CVA optimally represents the group means of X in an r-dimensional space. This can be done by maximizing a ratio criterion (basically one- dimensional) or, more flexibly, by minimizing a rank-constrained least-squares fitting criterion (which is not confined to being one-dimensional but depends on defining an appropriate Mahalanobis metric). In modern n < p problems, where W is not of full rank, the ratio criterion is shown not to be coherent but the fit criterion, with an attention to associated metrics, readily generalizes. In this context we give a unified generalization of CVA, introducing two metrics, one in the range space of W and the other in the null space of W, that have links with Mahalanobis distance. This generalization is computationally efficient, since it requires only the spectral decomposition of a n×n matrix.  相似文献   

20.
Ontological Frameworks for Scientific Theories   总被引:1,自引:0,他引:1  
A close examination of the literature on ontology may strike one with roughly two distinct senses of this word. According to the first of them, which we shall call traditional ontology, ontology is characterized as the a priori study of various “ontological categories”. In a second sense, which may be called naturalized ontology, ontology relies on our best scientific theories and from them it tries to derive the ultimate furniture of the world. From a methodological point of view these two senses of ontology are very far away. Here, we discuss a possible relationship between these senses and argue that they may be made compatible and complement each other. We also examine how logic, understood as a linguistic device dealing with the conceptual framework of a theory and its basic inference patterns must be taken into account in this kind of study. The idea guiding our proposal may be put as follows: naturalized ontology checks for the applicability of the ontological categories proposed by traditional ontology and give substantial feedback for it. The adequate expression of some of the resulting ontological frameworks may require a different logic. We conclude with a discussion of the case of orthodox quantum mechanics, arguing that this theory exemplifies the kind of relationship between the two senses of ontology. We also argue that the view proposed here may throw some light in ontological questions concerning this theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号