首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bennett CL 《Nature》2006,440(7088):1126-1131
Cosmology is undergoing a revolution. With recent precise measurements of the cosmic microwave background radiation, large galaxy redshift surveys, better measurements of the expansion rate of the Universe and a host of other astrophysical observations, there is now a standard, highly constrained cosmological model. It is not a cosmology that was predicted. Unidentified dark particles dominate the matter content of our Universe, and mysteries surround the processes responsible for the accelerated expansion at its earliest moments (inflation?) and for its recent acceleration (dark energy?). New measurements must address the fundamental questions: what happened at the birth of the Universe, and what is its ultimate fate?  相似文献   

2.
The large-scale structure in the distribution of galaxies is thought to arise from the gravitational instability of small fluctuations in the initial density field of the Universe. A key test of this hypothesis is that forming superclusters of galaxies should generate a systematic infall of other galaxies. This would be evident in the pattern of recessional velocities, causing an anisotropy in the inferred spatial clustering of galaxies. Here we report a precise measurement of this clustering, using the redshifts of more than 141,000 galaxies from the two-degree-field (2dF) galaxy redshift survey. We determine the parameter beta = Omega0.6/b = 0.43 +/- 0.07, where Omega is the total mass-density parameter of the Universe and b is a measure of the 'bias' of the luminous galaxies in the survey. (Bias is the difference between the clustering of visible galaxies and of the total mass, most of which is dark.) Combined with the anisotropy of the cosmic microwave background, our results favour a low-density Universe with Omega approximately 0.3.  相似文献   

3.
When galaxy formation started in the history of the Universe remains unclear. Studies of the cosmic microwave background indicate that the Universe, after initial cooling (following the Big Bang), was reheated and reionized by hot stars in newborn galaxies at a redshift in the range 6 < z < 14 (ref. 1). Though several candidate galaxies at redshift z > 7 have been identified photometrically, galaxies with spectroscopically confirmed redshifts have been confined to z < 6.6 (refs 4-8). Here we report a spectroscopic redshift of z = 6.96 (corresponding to just 750 Myr after the Big Bang) for a galaxy whose spectrum clearly shows Lyman-alpha emission at 9,682 A, indicating active star formation at a rate of approximately 10M(o) yr(-1), where M(o) is the mass of the Sun. This demonstrates that galaxy formation was under way when the Universe was only approximately 6 per cent of its present age. The number density of galaxies at z approximately 7 seems to be only 18-36 per cent of the density at z = 6.6.  相似文献   

4.
The cold dark matter model has become the leading theoretical picture for the formation of structure in the Universe. This model, together with the theory of cosmic inflation, makes a clear prediction for the initial conditions for structure formation and predicts that structures grow hierarchically through gravitational instability. Testing this model requires that the precise measurements delivered by galaxy surveys can be compared to robust and equally precise theoretical calculations. Here we present a simulation of the growth of dark matter structure using 2,160(3) particles, following them from redshift z = 127 to the present in a cube-shaped region 2.230 billion lightyears on a side. In postprocessing, we also follow the formation and evolution of the galaxies and quasars. We show that baryon-induced features in the initial conditions of the Universe are reflected in distorted form in the low-redshift galaxy distribution, an effect that can be used to constrain the nature of dark energy with future generations of observational surveys of galaxies.  相似文献   

5.
Coles P  Chiang LY 《Nature》2000,406(6794):376-378
The local Universe displays a rich hierarchical pattern of galaxy clusters and superclusters. The early Universe, however, was almost smooth, with only slight 'ripples' as seen in the cosmic microwave background radiation. Models of the evolution of cosmic structure link these observations through the effect of gravity, because the small initially overdense fluctuations are predicted to attract additional mass as the Universe expands. During the early stages of this expansion, the ripples evolve independently, like linear waves on the surface of deep water. As the structures grow in mass, they interact with each other in nonlinear ways, more like waves breaking in shallow water. We have recently shown how cosmic structure can be characterized by phase correlations associated with these nonlinear interactions, but it was not clear how to use that information to obtain quantitative insights into the growth of structures. Here we report a method of revealing phase information, and show quantitatively how this relates to the formation of filaments, sheets and clusters of galaxies by nonlinear collapse. We develop a statistical method based on information entropy to separate linear from nonlinear effects, and thereby are able to disentangle those aspects of galaxy clustering that arise from initial conditions (the ripples) from the subsequent dynamical evolution.  相似文献   

6.
Wyithe JS  Loeb A 《Nature》2006,441(7091):322-324
A large number of faint galaxies, born less than a billion years after the Big Bang, have recently been discovered. Fluctuations in the distribution of these galaxies contributed to a scatter in the ionization fraction of cosmic hydrogen on scales of tens of megaparsecs, as observed along the lines of sight to the earliest known quasars. Theoretical simulations predict that the formation of dwarf galaxies should have been suppressed after cosmic hydrogen was reionized, leading to a drop in the cosmic star-formation rate. Here we report evidence for this suppression. We show that the post-reionization galaxies that produced most of the ionizing radiation at a redshift z approximately 5.5 must have had a mass in excess of approximately 10(10.9 +/- 0.5) solar masses (M(o)) or else the aforementioned scatter would have been smaller than observed. This limiting mass is two orders of magnitude larger than the galaxy mass that is thought to have dominated the reionization of cosmic hydrogen (approximately 10(8) M(o)). We predict that future surveys with space-based infrared telescopes will detect a population of smaller galaxies that reionized the Universe at an earlier time, before the epoch of dwarf galaxy suppression.  相似文献   

7.
The blackbody radiation left over from the Big Bang has been transformed by the expansion of the Universe into the nearly isotropic 2.73 K cosmic microwave background. Tiny inhomogeneities in the early Universe left their imprint on the microwave background in the form of small anisotropies in its temperature. These anisotropies contain information about basic cosmological parameters, particularly the total energy density and curvature of the Universe. Here we report the first images of resolved structure in the microwave background anisotropies over a significant part of the sky. Maps at four frequencies clearly distinguish the microwave background from foreground emission. We compute the angular power spectrum of the microwave background, and find a peak at Legendre multipole Ipeak = (197 +/- 6), with an amplitude delta T200 = (69 +/- 8) microK. This is consistent with that expected for cold dark matter models in a flat (euclidean) Universe, as favoured by standard inflationary models.  相似文献   

8.
Chapman SC  Blain AW  Ivison RJ  Smail IR 《Nature》2003,422(6933):695-698
A significant fraction of the energy emitted in the early Universe came from very luminous galaxies that are largely hidden at optical wavelengths (because of interstellar dust grains); this energy now forms part of the cosmic background radiation at wavelengths near 1 mm (ref. 1). Some submillimetre (submm) galaxies have been resolved from the background radiation, but they have been difficult to study because of instrumental limitations. This has impeded the determination of their redshifts (z), which is a crucial element in understanding their nature and evolution. Here we report spectroscopic redshifts for ten submm galaxies that were identified using high-resolution radio observations. The median redshift for our sample is 2.4, with a quartile range of 1.9-2.8. This population therefore coexists with the peak activity of quasars, suggesting a close relationship between the growth of massive black holes and luminous dusty galaxies. The space density of submm galaxies at redshifts over 2 is about 1,000 times greater than that of similarly luminous galaxies in the present-day Universe, so they represent an important component of star formation at high redshifts.  相似文献   

9.
Boughn S  Crittenden R 《Nature》2004,427(6969):45-47
Observations of distant supernovae and the fluctuations in the cosmic microwave background (CMB) indicate that the expansion of the Universe may be accelerating under the action of a 'cosmological constant' or some other form of 'dark energy'. This dark energy now appears to dominate the Universe and not only alters its expansion rate, but also affects the evolution of fluctuations in the density of matter, slowing down the gravitational collapse of material (into, for example, clusters of galaxies) in recent times. Additional fluctuations in the temperature of CMB photons are induced as they pass through large-scale structures and these fluctuations are necessarily correlated with the distribution of relatively nearby matter. Here we report the detection of correlations between recent CMB data and two probes of large-scale structure: the X-ray background and the distribution of radio galaxies. These correlations are consistent with those predicted by dark energy, indicating that we are seeing the imprint of dark energy on the growth of structure in the Universe.  相似文献   

10.
Chen HW  Lanzetta KM  Pascarelle S  Yahata N 《Nature》2000,408(6812):562-564
Observations of distant galaxies are important both for understanding how galaxies form and for probing the physical conditions of the Universe at early times. It is, however, very difficult to identify galaxies at redshifts z > 5, because they are so faint and have few spectral characteristics. We previously reported the probable identification of a galaxy at z = 6.68, based on one line and an apparent break in the spectrum just shortwards of that, which we interpreted as Lyman alpha emission and the Lyman alpha break, where photons with shorter wavelengths are absorbed by the intervening neutral hydrogen gas. Here we present optical photometry that shows moderate detections of light in the B- and V-band images, which are inconsistent with the expected absence of flux shortwards of the Lyman alpha break for alpha galaxy at z > 5, and inconsistent with the previous flux measurement. Moreover, the spectral energy distribution for this object cannot readily be fitted by any known galaxy spectral template at any redshift, so the redshift is undetermined.  相似文献   

11.
The most massive galaxies and the richest clusters are believed to have emerged from regions with the largest enhancements of mass density relative to the surrounding space. Distant radio galaxies may pinpoint the locations of the ancestors of rich clusters, because they are massive systems associated with 'overdensities' of galaxies that are bright in the Lyman-alpha line of hydrogen. A powerful technique for detecting high-redshift galaxies is to search for the characteristic 'Lyman break' feature in the galaxy colour, at wavelengths just shortwards of Lyalpha, which is due to absorption of radiation from the galaxy by the intervening intergalactic medium. Here we report multicolour imaging of the most distant candidate protocluster, TN J1338-1942 at a redshift z approximately 4.1. We find a large number of objects with the characteristic colours of galaxies at that redshift, and we show that this excess is concentrated around the targeted dominant radio galaxy. Our data therefore indicate that TN J1338-1942 is indeed the most distant cluster progenitor of a rich local cluster, and that galaxy clusters began forming when the Universe was only ten per cent of its present age.  相似文献   

12.
The Hubble Deep Field provides one of the deepest multiwavelength views of the distant Universe and has led to the detection of thousands of galaxies seen throughout cosmic time. An early map of the Hubble Deep Field at a wavelength of 850?micrometres, which is sensitive to dust emission powered by star formation, revealed the brightest source in the field, dubbed HDF?850.1 (ref. 2). For more than a decade, and despite significant efforts, no counterpart was found at shorter wavelengths, and it was not possible to determine its redshift, size or mass. Here we report a redshift of z = 5.183 for HDF?850.1, from a millimetre-wave molecular line scan. This places HDF?850.1 in a galaxy overdensity at z?≈?5.2, corresponding to a cosmic age of only 1.1?billion years after the Big Bang. This redshift is significantly higher than earlier estimates and higher than those of most of the hundreds of submillimetre-bright galaxies identified so far. The source has a star-formation rate of 850 solar masses per year and is spatially resolved on scales of 5 kiloparsecs, with an implied dynamical mass of about 1.3?×?10(11) solar masses, a significant fraction of which is present in the form of molecular gas. Despite our accurate determination of redshift and position, a counterpart emitting starlight remains elusive.  相似文献   

13.
The mass function of dwarf satellite galaxies that are observed around Local Group galaxies differs substantially from simulations based on cold dark matter: the simulations predict many more dwarf galaxies than are seen. The Local Group, however, may be anomalous in this regard. A massive dark satellite in an early-type lens galaxy at a redshift of 0.222 was recently found using a method based on gravitational lensing, suggesting that the mass fraction contained in substructure could be higher than is predicted from simulations. The lack of very low-mass detections, however, prohibited any constraint on their mass function. Here we report the presence of a (1.9?±?0.1)?×?10(8) M dark satellite galaxy in the Einstein ring system JVAS B1938+666 (ref. 11) at a redshift of 0.881, where M denotes the solar mass. This satellite galaxy has a mass similar to that of the Sagittarius galaxy, which is a satellite of the Milky Way. We determine the logarithmic slope of the mass function for substructure beyond the local Universe to be 1.1(+0.6)(-0.4), with an average mass fraction of 3.3(+3.6)(-1.8) per cent, by combining data on both of these recently discovered galaxies. Our results are consistent with the predictions from cold dark matter simulations at the 95 per cent confidence level, and therefore agree with the view that galaxies formed hierarchically in a Universe composed of cold dark matter.  相似文献   

14.
依照目前的宇宙模型,宇宙之初是均匀而各向同性的。为了解释当前宇宙中观测到的各种星系结构,必须有某种机制导致均匀介质中出现结团以及结构演化。Jeans证明了一大团有质量的气体存在自引力不稳定性,它成为了宇宙结构演化的一般理论。在这个理论中需要早期宇宙各处存在密度涨落。另外,关于宇宙背景辐射的实验探测数据显示了背景光子温度存在微弱的各向异性,这些数据包含了有关基本宇宙参数,尤其是早期宇宙总能量密度和曲率的重要信息。通过对上述实验数据和理论的分析,从温度各向异性推算出了光子退耦时的密度相对涨落。  相似文献   

15.
Walter F  Bertoldi F  Carilli C  Cox P  Lo KY  Neri R  Fan X  Omont A  Strauss MA  Menten KM 《Nature》2003,424(6947):406-408
Observations of molecular hydrogen in quasar host galaxies at high redshifts provide fundamental constraints on galaxy evolution, because it is out of this molecular gas that stars form. Molecular hydrogen is traced by emission from the carbon monoxide molecule, CO; cold H2 itself is generally not observable. Carbon monoxide has been detected in about ten quasar host galaxies with redshifts z > 2; the record-holder is at z = 4.69 (refs 1-3). Here we report CO emission from the quasar SDSS J114816.64 + 525150.3 (refs 5, 6) at z = 6.42. At that redshift, the Universe was only 1/16 of its present age, and the era of cosmic reionization was just ending. The presence of about 2 x 1010 M\circ of H2 in an object at this time demonstrates that molecular gas enriched with heavy elements can be generated rapidly in the youngest galaxies.  相似文献   

16.
DR Law  AE Shapley  CC Steidel  NA Reddy  CR Christensen  DK Erb 《Nature》2012,487(7407):338-340
Although grand-design spiral galaxies are relatively common in the local Universe, only one has been spectroscopically confirmed to lie at redshift z?>?2 (HDFX 28; z = 2.011); and it may prove to be a major merger that simply resembles a spiral in projection. The rarity of spirals has been explained as a result of disks being dynamically 'hot' at z?>?2 (refs 2-5), which may instead favour the formation of commonly observed clumpy structures. Alternatively, current instrumentation may simply not be sensitive enough to detect spiral structures comparable to those in the modern Universe. At z?相似文献   

17.
Observations of star formation and kinematics in early galaxies at high spatial and spectral resolution have shown that two-thirds are massive rotating disk galaxies, with the remainder being less massive non-rotating objects. The line-of-sight-averaged velocity dispersions are typically five times higher than in today's disk galaxies. This suggests that gravitationally unstable, gas-rich disks in the early Universe are fuelled by cold, dense accreting gas flowing along cosmic filaments and penetrating hot galactic gas halos. These accreting flows, however, have not been observed, and cosmic accretion cannot power the observed level of turbulence. Here we report observations of a sample of rare, high-velocity-dispersion disk galaxies in the nearby Universe where cold accretion is unlikely to drive their high star formation rates. We find that their velocity dispersions are correlated with their star formation rates, but not their masses or gas fractions, which suggests that star formation is the energetic driver of galaxy disk turbulence at all cosmic epochs.  相似文献   

18.
The prompt gamma-ray emission from gamma-ray bursts (GRBs) should be detectable out to distances of z > 10 (ref. 1), and should therefore provide an excellent probe of the evolution of cosmic star formation, reionization of the intergalactic medium, and the metal enrichment history of the Universe. Hitherto, the highest measured redshift for a GRB has been z = 4.50 (ref. 5). Here we report the optical spectrum of the afterglow of GRB 050904 obtained 3.4 days after the burst; the spectrum shows a clear continuum at the long-wavelength end of the spectrum with a sharp cut-off at around 9,000 A due to Lyman alpha absorption at z approximately 6.3 (with a damping wing). A system of absorption lines of heavy elements at z = 6.295 +/- 0.002 was also detected, yielding the precise measurement of the redshift. The Si ii fine-structure lines suggest a dense, metal-enriched environment around the progenitor of the GRB.  相似文献   

19.
A geometric measure of dark energy with pairs of galaxies   总被引:1,自引:0,他引:1  
Marinoni C  Buzzi A 《Nature》2010,468(7323):539-541
Observations indicate that the expansion of the Universe is accelerating, which is attributed to a ‘dark energy’ component that opposes gravity. There is a purely geometric test of the expansion of the Universe (the Alcock–Paczynski test), which would provide an independent way of investigating the abundance (Ω(X)) and equation of state (W(X)) of dark energy. It is based on an analysis of the geometrical distortions expected from comparing the real-space and redshift-space shape of distant cosmic structures, but it has proved difficult to implement. Here we report an analysis of the symmetry properties of distant pairs of galaxies from archival data. This allows us to determine that the Universe is flat. By alternately fixing its spatial geometry at Ω(k)≡0 and the dark energy equation-of-state parameter at W(X)≡-1, and using the results of baryon acoustic oscillations, we can establish at the 68.3% confidence level that and -0.85>W(X)>-1.12 and 0.60<Ω(X)<0.80.  相似文献   

20.
Wyithe JS  Loeb A 《Nature》2004,432(7014):194-196
The first galaxies to appear in the Universe at redshifts z > 20 created ionized bubbles in the intergalactic medium of neutral hydrogen left over from the Big Bang. The ionized bubbles grew with time, surrounding clusters of dwarf galaxies and eventually overlapped quickly throughout the Universe over a narrow redshift interval near z approximately 6. This event signalled the end of the reionization epoch when the Universe was a billion years old. Measuring the size distribution of the bubbles at their final overlap phase is a focus of forthcoming programmes to observe highly redshifted radio emission from atomic hydrogen. Here we show that the combined constraints of cosmic variance and light travel time imply an observed bubble size at the end of the overlap epoch of approximately 10 physical Mpc, and a scatter in the observed redshift of overlap along different lines-of-sight of approximately 0.15. This scatter is consistent with observational constraints from recent spectroscopic data on the farthest known quasars. This implies that future radio experiments should be tuned to a characteristic angular scale of 0.5 degrees and have a minimum frequency bandwidth of approximately 8 MHz for an optimal detection of 21-cm flux fluctuations near the end of reionization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号