共查询到18条相似文献,搜索用时 78 毫秒
1.
分析了功能梯度压电材料中裂纹尖端的热应力.针对考虑的问题,通过Fourier积分变换把混合边值问题的求解转化为裂纹面上位移间断为未知量的对偶积分方程,然后利用Sehmidt方法来求解,最后通过数值算例讨论了温度及材料系数对应力强度因子、电位移强度因子的影响. 相似文献
2.
讨论无限长不同功能梯度压电有限层合板中裂纹对SH波的散射,在电渗透型边界条件情况下,将考虑的问题通过Fourier积分变换把混合边值问题的求解转化为对偶积分方程,然后利用Copson方法将得到的对偶积分方程转化为Fredholm积分方程再进行数值求解,得到裂纹尖端的应力强度因子.讨论材料梯度参数等因素对标准动应力强度因... 相似文献
3.
周春梅 《西北师范大学学报(自然科学版)》2014,(4)
讨论了功能梯度压电底层中共线双裂纹对SH波的散射问题:在假定裂纹面上边界条件是电渗透性的条件下,运用Fourier积分变换将问题转化成对偶积分方程,利用Copson方法将对偶积分方程变为第二类Fredholm积分方程进行求解,最后通过数值算例讨论了右裂纹尖端的动应力强度因子受波数、裂纹半长和梯度参数的影响情况. 相似文献
4.
研究了压电功能梯度材料层中平行于边界的动态反平面裂纹问题.数值方法为采用积分变换和位错函数法将问题简化为Cauchy奇异积分方程,最后给出数值结果,讨论了载荷耦合参数、材料分布形式和裂纹位置等因素对断裂行为的影响.结果发现,载荷耦合参数对规一化应力强度因子的影响比对规一化电位移强度因子的影响大,而电载荷的加载方向将决定动态应力强度因子在不同阶段的行为.此外,电载荷的存在总是促进裂纹扩展,但裂纹在负的电载荷作用下比在正的电载荷作用下更易扩展. 相似文献
5.
假设裂纹面上的边界条件为电渗透型的,从而导出了材料系数在横观各向同性平面内梯度分布的压电体的状态方程;利用Fourier变换给出了无限大压电体中位移、应力、电势、电位移的解析表达式;并求得了裂纹尖端动应力强度因子、电位移强度因子及电场强度因子,分析了不同的非均匀材料系数、几何尺寸及裂纹运动速度对它们的影响. 相似文献
6.
基于三维弹性理论和压电理论导出了材料系数在横观各向同性平面内梯度分布的压电体状态方程,进而对材料系数按指数函数规律分布的半无限大压电体中的反平面Yoffe型运动裂纹问题进行了求解.利用Fourier变换给出了半无限大压电体中位移、应力、电势、电位移的解析表达式,并求得了裂纹尖端动应力强度因子、电位移强度因子,分析了不同的非均匀材料系数、几何尺寸及裂纹运动速度对它们的影响. 相似文献
7.
马旭 《苏州科技学院学报(自然科学版)》2009,26(2):44-50
讨论了具有裂纹的无限长功能梯度/压电材料层合的SH波散射问题。在电渗透型边界条件情况下,将考虑的问题通过Fourier积分变换把混合边值问题的求解转化为对偶积分方程,利用Copson方法将得到的对偶积分方程转化为Fredholm积分方程再进行数值求解,得到了裂纹尖端的应力强度因子、电位移强度因子。最后讨论了材料梯度参数、入射角等因素对标准动应力强度因子的影响。 相似文献
8.
主要讨论功能梯度压电条中含有一条与梯度方向平行的裂纹与功能梯度条粘结在渗透和非渗透条件下的反平面静态问题.运用积分变换方法,给出了相应材料反平面问题的位移场的形式解.通过引入辅助函数并利用相关条件,将问题转化为求解一组带有Cauchy核的奇异积分方程,继而采用Gauss-Chebyshev方法对奇异积分方程进行数值求解.最后分析了材料参数、材料非均匀指数、载荷条件以及裂纹几何形状等对裂纹尖端应力强度因子的影响. 相似文献
9.
研究功能梯度压电带的反平面动态裂纹问题.假设功能梯度压电材料的材料性质沿其厚度方向按指数函数变化,考虑在非渗透型边界条件下,运用Laplace和Fourier变换,将混合边值问题转化为Laplace变换频域里的奇异积分方程,然后利用Laplace逆变换的数值方法求出动态应力强度因子和电位移强度因子.讨论载荷耦合参数、材料分布形式和裂纹位置等因素对断裂行为的影响.数值计算结果对压电材料的设计及应用有参考价值. 相似文献
10.
针对材料参数在厚度方向可按任意函数连续变化的梯度材料,给出了一个新的分层模型.恰当选取分析平面,使材料参数沿2轴方向按任意函数形式连续变化,利用该模型并借助复变函数方法,研究了各向异性功能梯度材料的Ⅰ型裂纹平面断裂问题.首次推出了材料参数沿梯度方向按任意函数连续变化的各向异性功能梯度材料板Ⅰ型裂纹尖端的应力场、位移场和梯度应力强度因子的理论计算公式.结果显示裂纹尖端应力场同样具有r反平方根的奇异性,因此可以运用广泛应用于均匀材料中的断裂力学方法来研究各向异性功能梯度材料问题. 相似文献
11.
基于三维弹性理论和压电理论 ,研究了功能梯度压电板条中的电渗透型运动裂纹问题 .利用Fourier积分变换方法 ,将混合边值问题化为对偶积分方程 ,并进一步归结为易于数值求解的第二类Fredholm积分方程 .通过渐近分析 ,获得裂纹尖端应力、应变、电位移和电场的解析解 ,给出裂纹尖端场各个变量的角分布函数 ,并求得裂纹尖端场的强度因子 .结果表明 ,对于电渗透型裂纹 ,功能梯度压电板条中运动裂纹尖端附近的各个场变量都具有 - 1/ 2阶的奇异性 ,而且与固定于裂纹尖端的运动坐标有关 ;当裂纹运动速度增大时 ,裂纹扩展的方向会偏离裂纹面 . 相似文献
12.
讨论了粘接均匀弹性材料的功能梯度压电带中单裂纹对SH射问题,假定裂纹面上的边界条件是电渗透性的,通过Fourier积分变换化为对偶积分方程,利用Copson方法将对偶积分方程转化为第二类Fredholm积分方程解,得到了裂纹尖端的应力强度因子和电位移强度因子,最后讨论了材料梯度参数,波数因素对标准动应力强度因子的影响 相似文献
13.
隋中合 《太原师范学院学报(自然科学版)》2013,(2):113-116
针对无限大正交各向异性功能梯度材料中Yoffe型运动裂纹受反平面剪切载荷的动力学问题,假设材料两个方向剪切模量均采用双参数任意次幂函数模型,采用积分变换-对偶积分方程方法,求得裂纹尖端动态应力场和位移场以及动应力强度因子.借助Matlab软件研究裂纹运动速度和梯度参数以及材料不均匀系数对动应力强度因子的影响.结果显示裂纹尖端应力同均匀材料一样具有奇异性;无量纲动应力强度因子随裂纹运动速度的增大而减小,随梯度参数的增大而增大. 相似文献
14.
功能梯度压电材料的非均匀材料特性将导致标准J积分失去与路径无关的特性.为此,提出了修正J积分来计算裂纹尖端的能量释放率,该修正J积分在功能梯度压电材料中具有与积分路径无关的性质.以功能梯度压电板的平面问题为例,给出了一些数值算例以说明修正J积分在计算功能梯度压电材料能量释放率方面的优越性. 相似文献
15.
采用基于边界元方法的广义Kelvin解对功能梯度材料中的裂纹问题进行了研究,主要在对裂纹的评价中采用了多域法和八节点面力奇异边界单元,并采用层离散化方法用来近似功能梯度材料,计算出了不同条件下功能梯度材料中币形裂纹的应力强度因子。 相似文献
16.
提出一种扩展无网格法模拟二维功能梯度材料I、II型复合断裂问题.基于单位分解思想,在EFGM近似函数中分别添加阶跃函数和奇异函数,依次表征不连续位移场和裂尖奇异应力场.结合一种不需要求解梯度材料参数的互作用积分的域形式计算了复合型应力强度因子.两个功能梯度板的数值算例验证了单位分解扩展无网格法的可行性和有效性. 相似文献
17.
讨论了热栽荷下功能梯度材料中裂纹对SH波的散射问题.借助Fourier积分变换,将所研究的问题转化成对偶积分方程,运用Copson方法将对偶积分方程变为第二类Fredholm积分方程进行求解,分析了材料梯度参数、温度等因素对标准化动应力强度因子的影响. 相似文献
18.
利用奇异积分方程方法研究了正交各向异性的功能梯度材料涂层基底结构的平面断裂问题,首先通过积分变换得到问题的形式解,然后利用边界条件通过积分变换与留数定理得到了一组奇异积分方程,最后利用Gauss-Chebyshev方法进行数值求解,讨论了材料参数、材料非均匀参数以及裂纹几何形状等对裂纹尖端应力强度因子的影响. 相似文献