首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
以激活磷脂酰肌醇3-激酶(PI3K)/蛋白激酶B(Akt)/内皮型一氧化氮合酶(eNOS)信号通路、抑制心肌细胞凋亡为切入点,探究瓜蒌皮水提物(TP-W)保护心肌缺血的机制.分离大鼠心肌细胞,通过缺氧气体+无血清培养液培养制造缺血缺氧损伤模型,以模拟急性心肌缺血时的体内心肌细胞环境;同时添加PI3K特异性抑制剂(LY294002)和TP-W处理细胞,利用倒置相差显微镜观察细胞形态,噻唑兰法、末端标记法分别检测细胞存活率及凋亡率,免疫荧光联合免疫印迹方法定位、定量地检测细胞内PI3K、Akt及eNOS蛋白表达及磷酸化水平.结果显示:对上述缺血缺氧损伤的心肌细胞,TP-W可显著改善其生长状态、提高存活率、降低凋亡率;同时显著上调上述3种蛋白表达水平及磷酸化水平,但磷酸化水平均可被LY294002处理显著削弱.可见,激活PI3K/Akt/eNOS信号通路、抑制心肌细胞凋亡可能是TP-W抗心肌缺血的重要机制,也是中药“开胸除痹”的关键生物学内涵.  相似文献   

2.
目的:探索高血压病血瘀证患者血清对内皮细胞功能及AMPK活性的影响.方法:高血压病血瘀证患者血清刺激人脐静脉内皮细胞(HUVECs)24 h,以高血压病非血瘀证患者血清作为对照.采用一氧化氮(NO)、内皮素(ET-1)检测试剂盒检测NO和ET-1的含量.Western blot法检测磷酸化一氧化氮合酶(e NOS)、总e NOS、细胞间黏附分子-1(ICAM-1)、血管细胞黏附分子-1(VCAM-1)、磷酸化AMPK及总AMPK的表达.定量PCR法检测肿瘤坏死因子(TNF-α)、白细胞介素-1β(IL-1β)的表达.结果:高血压病血瘀证患者血清处理24 h后,显著降低NO含量、抑制e NOS的活性、升高ET-1的含量,升高ICAM-1、VCAM-1的表达,升高单核细胞黏附率,升高内皮细胞TNF-α、IL-1β的表达水平,与高血压病非血瘀证患者血清相比,有统计学差异(P0.05).此外,高血压病血瘀证患者血清显著降低蛋白激酶AMPKα的磷酸化水平,与高血压病非血瘀证患者血清相比,有统计学差异(P0.05).结论:高血压病血瘀证患者血清能诱导内皮功能障碍和炎症反应,其机制可能与抑制AMPK的活性有关.  相似文献   

3.
一氧化氮(NO)广泛存在于各种细胞中,在哺乳动物的心血管系统、神经系统、免疫系统和生殖系统等正常的生理活动和病理变化中发挥着十分重要作用.一氧化氮合酶(NOS)催化底物后生成NO,NO与可溶性鸟苷酸环化酶结合,促使GTP转化成cGMP,再激活cGMP依赖性的蛋白激酶(PKG),使蛋白质磷酸化而发挥生物学效应.即NOS/NO/cGMP/PKG作用通路.丝裂原活化蛋白激酶(MAPK)是哺乳动物细胞内最重要的信号系统之一,在细胞增殖、生长、发育、分化、凋亡以及应激、炎症等多种生理和病理过程发挥十分重要的调节作用,主要是通过MAPKKK/MAPKK/MAP级联系统传递信号.已经在多种细胞中研究发现,NO与MAPK信号转导途径之间有着密切的相互调节关系.因此,加深对信号传导通路各个环节两者调控机理的认识,对某些疾病病理机制的阐明和治疗有重要理论意义和应用价值,因而也受到广泛的关注.文中根据此前的报道,结合该实验室的研究结果,综述了NO与MAPK信号转导途径之间的相互调节关系.  相似文献   

4.
目的:研究鱼腥草素钠对脂多糖(LPS)诱导的人脐静脉内皮细胞(HUVECs)NO合成及一氧化氮合酶(NOS)活力的影响.方法:采用15μg/ml LPS作用于HUVECs,共同孵育12h建立炎性损伤细胞模型.考察不同剂量鱼腥草素钠对各组HUVECs细胞存活率、培养上清液中LDH活力、NO含量、内皮型NOS(eNOS)及诱导型NOS(iNOS)表达的影响.结果:鱼腥草素钠可明显提高HUVECs细胞存活率,增加NO的分泌与释放,提高eNOS与降低iNOS活力,从而保护脂多糖诱导的HUVECs炎性损伤.结论:鱼腥草素钠对脂多糖诱导损伤的内皮细胞具有保护作用,其机制与其促进内皮细胞NO分泌与释放,增强eNOS活性和表达,改善血管内皮功能状态相关.  相似文献   

5.
体外培养Tca8113细胞,随机分为4组,(1)对照组;(2)埃克替尼处理组(20μmo1/L);(3)PKC抑制剂Ro31-8220(3μmol/L)处理组;(4)埃克替尼+Ro31-8220组(20μmo1/L Icotinib,3μmol/L Ro31-8220),不同干预因素处理细胞4h.Western blot检测不同处理组的胞膜内的PKC-α的表达水平,iNOS ELISA检测试剂盒测定细胞的iNOS含量,Griess方法测定Tca8113细胞产生的NO水平,用DNA fragmentation检测Tca8113细胞的凋亡情况.结果表明埃克替尼组DNA fragmentation细胞凋亡及上清液的iNOS,NO较对照组均明显升高;埃克替尼组细胞膜的PKC-α蛋白表达量明显增加.用埃克替尼与PKC的抑制剂Ro31-8220共同处理Tca8113细胞后,胞膜的PKC-α,iNOS的蛋白表达水平及产生的NO能被Ro31-8220显著抑制,且PKC抑制剂Ro31-8220能逆转埃克替尼引起的Tca8113细胞凋亡.埃克替尼能诱导Tca8113细胞iNOS表达和NO生成增加并能诱导Tca8113细胞凋亡;埃克替尼能促进细胞膜内的PKC-α表达增加;埃克替尼诱导的Tca8113细胞iNOS表达和凋亡与PKC有关.  相似文献   

6.
自噬与肿瘤的发生有着密切的关系.通过防止受损蛋白质和细胞器的毒性积累,自噬限制氧化应激、慢性组织损伤和致癌信号传导,抑制癌症的发生,这表明了自噬激活在癌症预防和治疗中的作用.研究发现一种新的咪唑,命名为NO.143.利用胰腺癌细胞PANC-1为模型,用MTS检测不同浓度NO.143对细胞活力的影响,共聚焦显微镜观察自噬荧光点,Western blot检测自噬相关蛋白LC3B、ATG13、p62的表达情况,以及AMPK/mTOR信号通路相关蛋白的表达情况.结果表明,NO.143呈现浓度依赖性地抑制肿瘤细胞的增殖. NO.143能够明显增加细胞中自噬荧光斑点、LC3B表达、ATG13的含量和p62的降解,表明NO.143能够显著上调肿瘤细胞的自噬.进一步研究显示,NO.143能够增加AMPKα的磷酸化水平,降低哺乳动物雷帕霉素靶蛋白(mTOR)和S6的磷酸化水平.相反的,在抑制AMPKα活性后,这种现象发生逆转.这些结果都可能表明NO.143通过AMPK/mTOR信号传导途径诱导肿瘤自噬,抑制肿瘤细胞的增殖.  相似文献   

7.
目的研究黄连素对软脂酸诱导人脐静脉内皮细胞(HUVECs)损伤的保护作用,并初步探讨其作用机制.方法采用500μmol/L软脂酸培养HUVECs 24 h,建立内皮细胞损伤模型,MTT法观察黄连素对细胞存活率的影响;检测细胞培养上清液中一氧化氮(NO)含量;RT-PCR法检测内皮型一氧化氮合酶(e NOS)mRNA水平;Western blot方法检测e NOS和磷酸化e NOS蛋白的表达.结果与对照组比较,软脂酸组细胞存活率降低(P0.05),培养液中NO含量下降(P0.05),细胞内e NOS mRNA水平、e NOS及磷酸化e NOS蛋白表达水平均显著下降(P0.01,P0.05).与软脂酸组比较,黄连素组细胞存活率增加,培养液中NO含量明显提高(P0.05),细胞内e NOS mRNA水平和磷酸化蛋白表达水平均显著提高(P0.01,P0.05).结论黄连素对软脂酸引起的血管内皮细胞损伤有显著的保护作用,并可能与上调e NOS、促进NO生成有关.  相似文献   

8.
采用脂多糖诱导的RAW 264. 7巨噬细胞体外炎症模型评价physagulin H的抗炎活性.以MTT法评价细胞毒性,Griess法检测NO的含量,ELISA法检测PGE2和TNF-α水平,Western Blot法检测炎症蛋白表达(iNOS和COX-2)以及对NF-κB炎性信号通路(IκB-α蛋白降解)和对MAPKs通路(JNK,p38和ERK蛋白磷酸化)的调控作用,研究physagulin H的抗炎活性及作用机制.结果表明,physagulin H可显著降低巨噬细胞RAW264. 7中NO、PGE_2和TNF-α的释放,还可显著降低iNOS和COX-2蛋白的高表达且呈浓度依赖性.Physagulin H对LPS诱导NF-κB/IκB-α降解具有显著抑制作用.进一步的抗炎机制研究表明,physagulin H能抑制JNK磷酸化,但对ERK 1/2和p38磷酸化无明显抑制作用.综上,physagulin H是通过调控NF-κB和JNK/MAPKs信号转导通路下调LPS诱导的炎性蛋白的高表达,进而抑制小鼠巨噬细胞产生和释放过量炎症介质以及炎症因子,从而发挥抗炎作用.  相似文献   

9.
不同强度运动对大鼠肾脏皮质区 NOS、Bcl-2/Bax表达的影响   总被引:8,自引:0,他引:8  
采用跑台训练方式,建立了大鼠有氧运动和疲劳运动模型,运用免疫组织化学SABC法研究不同运动强度对大鼠肾脏皮质区nNOSi、NOS、eNOS和Bcl-2/Bax表达的影响.结果显示,与对照组比较,有氧训练组nNOSi、NOS、eNOS分别升高了9.1%、11.1%(P<0.05)、33.3%(P<0.05);疲劳训练组分别升高了18.2%、22.2%(P<0.05)、66.7%(P<0.05);Bcl-2/Bax的表达在有氧运动组明显升高(升高了135.0%),在疲劳运动组略有降低(降低了8.8%).不同强度运动大鼠肾脏皮质区NOS的表达均有升高,显示运动诱导NO的生成增加;Bcl-2/Bax在肾脏皮质区的表达受运动强度的影响显著,大强度运动可引起Bax显著表达,Bcl-2表达减少,Bax/Bcl-2的比率增加,表明大强度运动可促进大鼠肾脏皮质区的细胞凋亡,且与NO大量生成有关.  相似文献   

10.
磷酸化信号通路在精子发生过程中有重要作用,本文研究小鼠睾丸支持细胞中雄激素诱导的蛋白磷酸化。研究中分离培养小鼠睾丸支持细胞,建立了稳定的培养体系。蛋白磷酸化抗体芯片结果显示,睾酮快速激活Akt及MEK/Erk的磷酸化,蛋白免疫印迹验证了芯片分析结果,且激酶磷酸化的激活是由AR介导。结果表明睾酮诱导小鼠睾丸支持细胞中Akt和MEK/Erk磷酸化。  相似文献   

11.
Endothelial nitric oxide synthase (eNOS) is the nitric oxide synthase isoform responsible for maintaining systemic blood pressure, vascular remodelling and angiogenesis. eNOS is phosphorylated in response to various forms of cellular stimulation, but the role of phosphorylation in the regulation of nitric oxide (NO) production and the kinase(s) responsible are not known. Here we show that the serine/threonine protein kinase Akt (protein kinase B) can directly phosphorylate eNOS on serine 1179 and activate the enzyme, leading to NO production, whereas mutant eNOS (S1179A) is resistant to phosphorylation and activation by Akt. Moreover, using adenovirus-mediated gene transfer, activated Akt increases basal NO release from endothelial cells, and activation-deficient Akt attenuates NO production stimulated by vascular endothelial growth factor. Thus, eNOS is a newly described Akt substrate linking signal transduction by Akt to the release of the gaseous second messenger NO.  相似文献   

12.
Nitric oxide (NO) produced by the endothelial NO synthase (eNOS) is a fundamental determinant of cardiovascular homesotasis: it regulates systemic blood pressure, vascular remodelling and angiogenesis. Physiologically, the most important stimulus for the continuous formation of NO is the viscous drag (shear stress) generated by the streaming blood on the endothelial layer. Although shear-stress-mediated phosphorylation of eNOS is thought to regulate enzyme activity, the mechanism of activation of eNOS is not yet known. Here we demonstrate that the serine/threonine protein kinase Akt/PKB mediates the activation of eNOS, leading to increased NO production. Inhibition of the phosphatidylinositol-3-OH kinase/Akt pathway or mutation of the Akt site on eNOS protein (at serine 1177) attenuates the serine phosphorylation and prevents the activation of eNOS. Mimicking the phosphorylation of Ser 1177 directly enhances enzyme activity and alters the sensitivity of the enzyme to Ca2+, rendering its activity maximal at sub-physiological concentrations of Ca2+. Thus, phosphorylation of eNOS by Akt represents a novel Ca2+-independent regulatory mechanism for activation of eNOS.  相似文献   

13.
14.
Lee JH  Koh H  Kim M  Kim Y  Lee SY  Karess RE  Lee SH  Shong M  Kim JM  Kim J  Chung J 《Nature》2007,447(7147):1017-1020
AMP-activated protein kinase (AMPK, also known as SNF1A) has been primarily studied as a metabolic regulator that is activated in response to energy deprivation. Although there is relatively ample information on the biochemical characteristics of AMPK, not enough data exist on the in vivo function of the kinase. Here, using the Drosophila model system, we generated the first animal model with no AMPK activity and discovered physiological functions of the kinase. Surprisingly, AMPK-null mutants were lethal with severe abnormalities in cell polarity and mitosis, similar to those of lkb1-null mutants. Constitutive activation of AMPK restored many of the phenotypes of lkb1-null mutants, suggesting that AMPK mediates the polarity- and mitosis-controlling functions of the LKB1 serine/threonine kinase. Interestingly, the regulatory site of non-muscle myosin regulatory light chain (MRLC; also known as MLC2) was directly phosphorylated by AMPK. Moreover, the phosphomimetic mutant of MRLC rescued the AMPK-null defects in cell polarity and mitosis, suggesting MRLC is a critical downstream target of AMPK. Furthermore, the activation of AMPK by energy deprivation was sufficient to cause dramatic changes in cell shape, inducing complete polarization and brush border formation in the human LS174T cell line, through the phosphorylation of MRLC. Taken together, our results demonstrate that AMPK has highly conserved roles across metazoan species not only in the control of metabolism, but also in the regulation of cellular structures.  相似文献   

15.
Endothelial nitric oxide synthase (eNOS) is critical in the regulation of vascular function, and can generate both nitric oxide (NO) and superoxide (O(2)(?-)), which are key mediators of cellular signalling. In the presence of Ca(2+)/calmodulin, eNOS produces NO, endothelial-derived relaxing factor, from l-arginine (l-Arg) by means of electron transfer from NADPH through a flavin containing reductase domain to oxygen bound at the haem of an oxygenase domain, which also contains binding sites for tetrahydrobiopterin (BH(4)) and l-Arg. In the absence of BH(4), NO synthesis is abrogated and instead O(2)(?-) is generated. While NOS dysfunction occurs in diseases with redox stress, BH(4) repletion only partly restores NOS activity and NOS-dependent vasodilation. This suggests that there is an as yet unidentified redox-regulated mechanism controlling NOS function. Protein thiols can undergo S-glutathionylation, a reversible protein modification involved in cellular signalling and adaptation. Under oxidative stress, S-glutathionylation occurs through thiol-disulphide exchange with oxidized glutathione or reaction of oxidant-induced protein thiyl radicals with reduced glutathione. Cysteine residues are critical for the maintenance of eNOS function; we therefore speculated that oxidative stress could alter eNOS activity through S-glutathionylation. Here we show that S-glutathionylation of eNOS reversibly decreases NOS activity with an increase in O(2)(?-) generation primarily from the reductase, in which two highly conserved cysteine residues are identified as sites of S-glutathionylation and found to be critical for redox-regulation of eNOS function. We show that eNOS S-glutathionylation in endothelial cells, with loss of NO and gain of O(2)(?-) generation, is associated with impaired endothelium-dependent vasodilation. In hypertensive vessels, eNOS S-glutathionylation is increased with impaired endothelium-dependent vasodilation that is restored by thiol-specific reducing agents, which reverse this S-glutathionylation. Thus, S-glutathionylation of eNOS is a pivotal switch providing redox regulation of cellular signalling, endothelial function and vascular tone.  相似文献   

16.
A human myelomonocytic cell line, U937, produced an interleukin-1 (IL-1) receptor antagonist protein (IRAP) which was purified and partially sequenced. A complementary DNA coding for IRAP was cloned and sequenced. The mature translation product of the cDNA has been expressed in Escherichia coli and was an active competitive inhibitor of the binding of IL-1 to the T-cell/fibroblast form of the IL-1 receptor. Recombinant IRAP specifically inhibited IL-1 bioactivity on T cells and endothelial cells in vitro and was a potent inhibitor of IL-1 induced corticosterone production in vivo.  相似文献   

17.
目的:研究P38α对人血管内皮细胞一氧化氮合酶(eNOS)基因启动子转录活性的影响.方法:利用硝酸还原酶法检测不同浓度氯化钴作用下人脐静脉血管内皮细胞-12(HUVEC-12)上清中的一氧化氮(NO)的含量.以pRL-TK为内参照,将已经构建好的pGL2-eNOS-p质粒分别与pGL3-BASIC、pcDNA3、p38a、及p38a(AF)共转染HUVEC-12细胞,利用双荧光素酶报告基因技术检测eNOS基因启动子转录活性,并在共转染的基础上加氯化钴刺激,并检测eNOS基因启动子转录活性.结果:氯化钴刺激下HUVEC-12细胞培养上清的NO含量随氯化钴作用浓度增加而提高,成功建立化学缺氧模型;p38a在正常和缺氧条件下均明显降低eNOS基因启动子的活性,可被无活性诱变体p38a(AF)逆转.结论:P38et下调人血eNOS基因启动子转录活性.  相似文献   

18.
Cytochrome P450 (CYP)-dependent metabolites of arachidonic acid, epoxyeicosatrienoic acids (EETs), have been suggested to be an endothelium-derived hyperpolarizing factor (EDHF). However, the interaction or relation between EDHF and endothelial nitric oxide synthase (eNOS) is still to be elucidated. In the present study, the regulation of eNOS by endogenous EDHF is examined. The cytochrome P450 epoxygenase BM3F87V is cloned into the mammalian expression vector pCB6. Cultured bovine aortic endothelial cells (BAECs) less than 4 passages are used and transfected with BM3F87V. The effects of endogenous EETs result from BM3F87V transfection on eNOS are assessed in the endothelial cells by Western blot and Northern blot, and eNOS activity is also measured by the conversion of L-arginine to L-citrulline. Compared to transfection with the empty pCB6 vector, transfection of BAECs with BM3F87V significantly elevates the levels of eNOS protein expression, which is markedly inhibited by treatment with CYP inhibitor 17-ODYA. BM3F87V transfection also elevates the eNOS mRNA level and increases the eNOS activity. This study suggests that EDHF up-regulates eNOS gene expression.  相似文献   

19.
Jeon SM  Chandel NS  Hay N 《Nature》2012,485(7400):661-665
Overcoming metabolic stress is a critical step for solid tumour growth. However, the underlying mechanisms of cell death and survival under metabolic stress are not well understood. A key signalling pathway involved in metabolic adaptation is the liver kinase B1 (LKB1)-AMP-activated protein kinase (AMPK) pathway. Energy stress conditions that decrease intracellular ATP levels below a certain level promote AMPK activation by LKB1. Previous studies showed that LKB1-deficient or AMPK-deficient cells are resistant to oncogenic transformation and tumorigenesis, possibly because of the function of AMPK in metabolic adaptation. However, the mechanisms by which AMPK promotes metabolic adaptation in tumour cells are not fully understood. Here we show that AMPK activation, during energy stress, prolongs cell survival by redox regulation. Under these conditions, NADPH generation by the pentose phosphate pathway is impaired, but AMPK induces alternative routes to maintain NADPH and inhibit cell death. The inhibition of the acetyl-CoA carboxylases ACC1 and ACC2 by AMPK maintains NADPH levels by decreasing NADPH consumption in fatty-acid synthesis and increasing NADPH generation by means of fatty-acid oxidation. Knockdown of either ACC1 or ACC2 compensates for AMPK activation and facilitates anchorage-independent growth and solid tumour formation in vivo, whereas the activation of ACC1 or ACC2 attenuates these processes. Thus AMPK, in addition to its function in ATP homeostasis, has a key function in NADPH maintenance, which is critical for cancer cell survival under energy stress conditions, such as glucose limitations, anchorage-independent growth and solid tumour formation in vivo.  相似文献   

20.
Hypoxic pulmonary hypertension, an important pathophysiological process in the development of a vari-ety of clinical cardiac and pulmonary diseases, has critical influence on the proceeding and prognosis of the dis- eases[1]. It is important to clarify the pathogenesis of the diseases. The discoveries of endogenous gas signal mole-cules, nitric oxide (NO) and carbon monoxide (CO), have been moving the research of hypoxic pulmonary hyper-tension to a very new phase. Our foregoing experiments …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号