首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
针对目前人脸表情识别存在准确率不高、模型复杂和计算量大的问题,文章提出了一种基于八度卷积改进的人脸表情识别模型(OCNN):使用改进的八度卷积进行特征提取,提高对细节特征的提取效果,降低特征图的冗余,在不增加参数的同时减少运算量,以提高特征提取性能;利用DyReLU激活函数来增强模型的学习和表达能力;使用自适应平均池化下采样层代替全连接层,以减少参数;将模型在大规模数据集上进行预训练,并在FER2013、FERPlus、RAF-DB数据集上进行模型性能验证实验。实验结果表明:训练后的模型权重为10.4 MB,在人脸表情识别数据集FER2013、FERPlus和RAF-DB上的准确率分别达到73.53%、89.58%和88.50%;与目前诸模型相比,OCNN模型的准确性高且计算资源消耗低,充分证明了该模型的有效性。  相似文献   

2.
提出一种多特征与卷积神经网络相结合的人脸表情识别方法。先对人脸表情图像进行预处理,根据人脸面部"三庭五眼"的特征和人脸的几何模型对图像进行裁剪,采用双三次插值法对图像进行缩放。然后提取样本的局部方向模式、二维离散小波变换、Sobel算子三种特征。将这三种特征以三通道图像的形式输入卷积神经网络中进行自适应融合,融合后的特征通过Softmax层进行分类。在CK+数据库的识别率为99.51%,在RAF-DB的识别率为72.1%,识别率都有所提升,验证了所提方法的有效性。  相似文献   

3.
结合ASM与Gabor小波的优点,提出可以有效提取人脸特征的ASM_GW,并通过LDA算法进一步降低了运算量.最后利用JAFFE人脸表情库对算法进行仿真,通过实验说明算法的有效性.  相似文献   

4.
以人脸表情视频序列为研究对象,介绍了人脸表情识别的一般过程,给出了基于SVM的人脸表情识别方法,讨论了面部表情强度度量方法。通过分析人脸表情的变化,在L-K光流算法基础上应用修正的特征点跟踪方法提取面部特征信息,使用SVM建立人脸表情模型和强度模型,进行表情识别,并对高兴表情进行强度等级分类。实验结果证明了提出方法的有效性。  相似文献   

5.
提出基于多特征集成分类器的人脸表情识别新算法。新算法首先对预处理后的人脸表情图像通过3种不同的特征提取方法来提取不同类型的表情特征,然后对不同特征构造不同的分类器,最后构造一个基于神经网络的集成分类器模型,对这3个分类器的输出进行决策融合,从而实现人脸表情的最终识别。在JAFFE人脸表情数据库中的试验结果表明,所提算法的识别效果优于单个特征和单一的分类器。  相似文献   

6.
7.
人脸表情识别一直是计算机视觉领域的一个难题.近年来,随着深度学习的飞速发展,一些基于卷积神经网络的方法大大提高了人脸表情识别的准确率,但未能充分利用人脸图像中的信息,这是由于对于面部表情识别有意义的特征主要集中在一些关键位置,例如眼睛、鼻子和嘴巴等区域,因此在特征提取时增加这些关键位置的权重可以改善表情识别的效果.为此...  相似文献   

8.
在自然环境中各种因素的干扰下,人脸表情信息匹配的识别率受到严重影响,针对此问题,提出一种改进的基于VGGNet16(visual geometry group network16)的网络模型.在VGGNet16模型的侧方添加一系列的侧输出层,并在该侧输出层添加不同的卷积核,通过上采样和下采样方法连接侧输出层的上下2层,...  相似文献   

9.
首先, 针对人脸表情识别问题提出一种新的多尺度特征选择网络识别方法, 该网络充分结合多尺度网络结构和特征选择结构的优点, 能更有效地提取面部静态图像中的空间信息. 其次, 为验证本文提出的多尺度特征选择网络的识别性能和泛化能力, 在两个经典的人脸表情识别数据集上与一些常用的方法进行对比和交叉验证实验. 实验结果表明, 该网络取得了更好的识别效果, 并且具有良好的泛化能力, 可以灵活地嵌入到人脸表情识别分析系统中.  相似文献   

10.
视频流中检测到的关键帧图像包含了足够的表情信息,为了将这些表情信息进行分类和识别,文章提出了一种新的弹性模板匹配算法,它首先针对经Gabor小波变换后的表情模板,运用模板图像中表情关键点的检测算法,根据表情关键点的特征信息,构造表情弹性图,通过改变表情模板弹性图中关键点的位置,将表情模板与被测表情弹性图进行非刚性匹配,进而得到两者之间的相似程度,最后通过改进的K-近邻分类策略,实现被测图像表情的有效分类与识别.  相似文献   

11.
基于遗传算法的小波神经网络研究及应用   总被引:2,自引:0,他引:2  
目的 为改进小波神经网络算法的缺陷.方法 当网络的输出层节点的输出值与1之差或输出层节点输出值小于等于设定的阚值,使用变系数法调整输出层的误差,然后再利用遗传算法优化小波网络的参数.结果 在齿轮箱故障诊断中,变系数法有效地防止了误差无法逆向传播下去,使网络失去学习能力.然而,通过遗传算法的全局优化搜索能力得到网络的最优参数,从而避免了网络陷入局部最小.结论 提出的基于遗传算法的小波神经网络即提高网络的诊断精度,又加快了其收敛速度.  相似文献   

12.
对小波混沌神经网络的内部状态进行改进,引入了三角函数扰动,提出了一种新型的带三角函数扰动的小波混沌神经网络模型,并把它应用到函数优化和组合优化问题中.仿真结果表明,在控制适当的扰动系数时,带三角函数扰动的小波混沌神经网络能有效地解决函数优化问题和组合优化问题,体现了小波混沌神经网络有很强的鲁棒性和抗干扰能力.  相似文献   

13.
小波神经网络在人脸识别中的应用   总被引:1,自引:0,他引:1  
人脸识别是一个涉及生理学、心理学、图像处理、计算机视觉、模式识别和数学等多个学科的前沿课题。小波神经网络是在小波分析研究获得突破的基础上提出的一种前馈性网络,避免了BP网络等结构设计上的盲目性,网络训练过程从根本上避免了局部最优等非线性优化问题,有较强的函数学习能力和推广能力。基于小波神经网络,文中提出了一种新的人脸识别算法。该算法利用小波多分辨特性和神经网络的鲁棒性和记忆性,同时结合了加速网络收敛速度的小波神经网络步长调整算法。实验证明该算法有高的检测率和有效性。  相似文献   

14.
基于小波神经网络理论的边坡位移预测   总被引:6,自引:0,他引:6  
研究边坡位移混沌时间序列的预测,利用混沌系统的相空间重构理论,提出基于小波神经网络的边坡位移预测方法.通过计算表明,该方法与其它方法相比可避免误差曲面局部最小,网络节点少,参数确定较为容易,学习效率高,收敛速度快,自适应性强,精度高等优点,为边坡位移预测提供了一种可行的、新的探索途经.  相似文献   

15.
基于小波神经网络的期权定价模型   总被引:2,自引:0,他引:2  
Black-Scholes模型所要求的假设条件在真实的市场条件下往往不能满足.提出了一种新的应用小波神经网络进行预测的欧式期权定价模型.将期权按钱性进行分类, 以一种新的加权的隐含波动率作为神经网络的输入变量,通过小波神经网络模型、BP网络模型和Black-Scholes模型来预测香港恒指买权的价格.实证结果表明,将一种加权的隐含波动率作为输入变量的小波神经网络模型优于Black-Scholes模型和其他神经网络模型.因此该模型可以更有效地预测欧式期权价格.  相似文献   

16.
提出了一种基于小波神经网络的掌纹识别方法。首先对掌纹图像经过预处理得到掌纹的感兴趣区域(ROI),然后利用小波包分解的方法对该区域进行掌纹特征的提取,再利用RBF网络的容错能力和较快的收敛性对掌纹图像加以识别。针对香港理工大学掌纹数据库进行了实验,实验结果证明,本算法可以达到很好的识别效果,为掌握识别提供了一种新途径。  相似文献   

17.
针对无线传感器网络传输过程中容易受到噪音干扰的问题,提出了一种新的业务流预测算法AWNNP(Ant colony-based Wavelet Neural Network Prediction).该算法首先利用小波变换对业务流进行分解,并将其小波系数和尺度系数作为样本数据.其次,结合蚁群算法和神经网络来训练样本数据,采用小波模型重构进行重构,以此获得业务流的预测数据.同时,通过仿真实验对比,并分析了小波神经网络预测算法和BP神经网络预测算法,实验结果表明,AWNNP算法性能较优,其误差为16.21%.  相似文献   

18.
用一种改进的BP小波神经网络对脑电图(EEG)数据信号进行压缩.对小波神经网络采用最速梯度下降法优化网络参数,并对学习率采用自适应学习速率方法自动调节.利用小波神经网络的函数逼近特性,对脑电随机信号进行逼近,最终压缩比可达15以上.实验结果显示,小波神经网络在大量压缩数据的同时,能较好地恢复原有信号。  相似文献   

19.
提出了一种基于BPN神经网络的水印算法.首先,对数字图像进行小波分解;其次,在小波域内选择水印位嵌入的系数块;最后,利用神经网络从嵌入水印的图像中恢复原始水印信息.实验结果表明:这种水印算法具有很好的性能.  相似文献   

20.
利用残值学习算法进行小波节点的选择,利用Akaike 准则确定预测模型的结构,采用误差反传方法在线调整网络连接参数.通过建立的自适应神经网络模型有效辨识船舶操纵运动动态.船舶航向预报仿真结果显示,基于小波神经网络的船舶航向预测器可以较高精度预报船舶操纵运动过程中船舶航向的变化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号