首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
传统的k-means聚类算法对初始聚类中心非常敏感,聚类的结果也常常随着初始聚类中心而波动。为了降低聚类算法的这种敏感性,本文提出了一种自适应的聚类算法(SA—K—means),该方法通过计算数据对象区域的密度,选择相互距离最远的高密度区域的中心作为初始聚类中心。实验表明SA—K—means聚类算法能有效地消除聚类算法对初始聚类中心的敏感性,得到满意的聚类结果。  相似文献   

2.
用k-means算法对二维数据进行聚类分析,并用C#语言实现了该算法。先按照样本点的距离进行初始划分,然后再按照各样本点和初始中点的距离远近进行聚类。结果表明,k-means算法对二维数据的聚类是有效的,实现该算法的程序对二维数据的聚类具有通用性。  相似文献   

3.
经典的分布式k-means聚类算法随机选取初始聚类中心,进行多次的迭代,容易使得聚类效率低,网络通信量大,而且聚类结果不稳定。针对这些问题,提出一种改进的分布式k-means聚类算法。该算法通过划分数据集,计算属性最密集的k个数据块作为聚类中心,以确保聚类中心的代表性,进而减少算法的迭代计算次数,提高聚类效率。通过在Hadoop分布式平台上进行实验,结果表明改进算法能减少迭代次数和收敛时间。  相似文献   

4.
基于山峰聚类的聚类上限确定方法   总被引:1,自引:0,他引:1  
文章提出了一种基于山峰聚类的聚类上限检测方法,依靠山峰聚类确定聚类数目的上限,仿真试验表明,这种方法能将聚类上限确定在一个合理的范围之内,从而加快聚类的效率.  相似文献   

5.
针对传统k-means聚类方法随机选择初始聚类中心而导致的收敛速度慢、聚类效果较差的问题,本文结合空间相似度度量提出一种改进的k-means初始聚类中心选择方法.该方法通过定义空间中样本的相似度,从而选择相似度较小的样本作为初始聚类中心,以减少达到聚类稳定状态的迭代次数,提高聚类的效率.UCI数据集上的实验结果表明,与传统k-means聚类方法相比,本文提出的改进的k-means初始聚类中心选择方法能够使聚类的收敛速度加快,得到良好的聚类效果.  相似文献   

6.
为了避免现有的居民阶梯电量制定方法存在的建模误差,提出基于电力大数据的分段电量制定方法。以用电量信息为输入量,应用k-means算法对居民用户进行聚类分析,将聚类结果作为阶梯分段的依据。对不同k值的聚类结果,选用S_Dbw指标分别对其有效性进行验证,综合选择最优聚类方案以得到分段电量。结合实例得到分段电量方案,并与现行方案在各阶梯用户覆盖率、用电量占比等方面进行对比。结果表明此方案下阶梯划分更加细致合理,更加适应当地的经济发展水平。此方法对分段电量的制定具有一定的参考价值。  相似文献   

7.
一种基于灰色聚类和模糊聚类的集成方法   总被引:2,自引:0,他引:2  
根据灰色聚类,模糊聚类,关联系数原理,提出一种新的综合集成方法,利用灰色关联系数将灰色聚类与模糊聚类集成,使聚类结果不仅反映了各聚类对象所属灰类的信息,还有效显化了各个对象间的相互关系的信息.  相似文献   

8.
k-means算法原理简单、收敛速度快,但易陷入局部最优,且须将聚类的类簇数作为先验知识,为此,引入量子微粒群与k-means算法结合,提出了一种改进的动态聚类算法。改进算法具有量子微粒群的全局搜索能力,且对每个粒子采用k-means进行优化,从而加快算法的收敛速度。通过适应度函数值的调整,算法在聚类中能够搜寻到最优类簇数,这样类簇个数和中心就不受主观因素的影响。实验表明,算法有效。  相似文献   

9.
提出基于约束三角剖分的k-means聚类算法.笔者首先按照约束三角剖分规则对数据点集进行三角网格化,删除大于给定阈值的长边形成k个连通子图,每个连通子图作为一个子类;然后对删除长边的孤立数据点在其邻域内进行局部划分,将其归到最接近的子类中.实验结果表明本文算法无需事先输入聚类数目,可以发现任意非凸形状簇.  相似文献   

10.
基于k-means聚类算法的试卷成绩分析研究   总被引:1,自引:0,他引:1  
研究了k-means聚类算法,并将此算法应用于高校学生试卷成绩分析中.首先对数据进行了预处理,然后使用k-means算法,对学生试卷成绩进行分类评价.用所获得的结果指导学生的学习和今后的教学工作.  相似文献   

11.
介绍了 k -means 和 DBSCAN 聚类算法的基本原理和优缺点,针对传统聚类算法无法有效处理高维混合属性数据集的问题,对原有的数据归一化方法进行改进,在 k -means 和 DBSCAN 聚类算法的基础之上,结合增量聚类的思想和数据之间相异度的计算方法,提出了基于密度的增量 k -means 聚类算法,有效处理具有高维混合属性的数据集,改进了数据相异度的计算方法。  相似文献   

12.
为提高列车车轮踏面检测效率,设计了一套基于机器视觉的车轮踏面动态检测系统,分析了k-means聚类算法,通过加权欧式距离对该算法进行改进,利用聚类法具有保持最大相似性的特性,将基于加权欧式距离的k-means聚类算法用于机器视觉的图像处理。先对原始图像作图像增强、图像灰度化等预处理,再以特征聚类思想对图像作阈值分割,使图像中的各部分特征更加突出。图像处理结果显示,基于加权欧式距离k-means聚类算法的车轮踏面损伤视觉检测系统可以有效地检测出踏面损伤。  相似文献   

13.
传统3DVM(3-Dimension Document Vector Model)由于没有使用新闻报道的时间因子,这使得该模型表示的新闻报道具有不准确性,进而影响新闻报道的聚类结果.本研究在三维文档向量模型的基础上加入了时间因子,提出了四维文档向量模型表示新闻报道.最后,用k-means聚类算法进行新闻报道的的无监督聚类.实例验证结果表明本文提出的4DVM和k-means相结合的聚类算法优于3DVM以及VSM(vector space mode)和k-means相结合的聚类算法.  相似文献   

14.
基于k-means算法的k值优化的研究与应用   总被引:2,自引:0,他引:2  
k-means算法是经常使用的一种聚类算法,但是易受聚类个数k的影响,其性能主要取决于k值优化,因此对近年来k-means算法的研究现状与进展进行总结。对较有代表性的k值优化的k-means算法,从思想、关键技术等方面进行分析概括,并选用著名数据集对一些典型算法进行了测试,主要从同一个数据集、不同的k值优化情况进行对比分析.上述工作将为聚类分析和数据挖掘的研究提供有益的参考.  相似文献   

15.
传统3DVM(3-Dimension Document Vector Model)由于没有使用新闻报道的时间因子,这使得该模型表示的新闻报道具有不准确性,进而影响新闻报道的聚类结果.本研究在三维文档向量模型的基础上加入了时间因子,提出了四维文档向量模型表示新闻报道.最后,用k-means聚类算法进行新闻报道的的无监督聚类.实例验证结果表明本文提出的4DVM和k-means相结合的聚类算法优于3DVM以及VSM(vector space mode)和k-means相结合的聚类算法.  相似文献   

16.
提出了一种基于k-均值聚类算法的RBF神经网络递推快速学习算法,并用此对动态非线性过程进行辩识。仿真结果表明了本文方法的可行性。  相似文献   

17.
针对绿色工艺评价样本具有不确定性、多维性以及量纲差异大的特点,为实现样本的合理分类,提出一种基于核的模糊可能性聚类新算法.该方法将核模糊聚类算法、可能性聚类算法和减法聚类算法相结合,以提高聚类的准确率;使用聚类有效性指标作为分类条件,自适应确定最佳分类数.仿真实验结果表明,该算法具有较好的有效性和鲁棒性,并将该算法运用在绿色工艺评价样本分类中,得到了较好的分类效果,验证了算法的实用性.  相似文献   

18.
王霄航 《科技信息》2012,(23):96-98
通信网络效能评估直接关系到通信网络系统的成败,本文采用层次分析法与模糊聚类分析相结合的方法来进行通信网络效能评估。构建了通信网络效能评估指标体系,并基于层次分析法确定各个指标的影响权值,在此基础上,通过实际调研分析获得了某通信网络的样本数据,采用模糊聚类分析方法对样本数据进行聚类分析,最终将该通信网络评估为优秀(Ⅰ类)、良好(Ⅱ类)、合格(Ⅲ类)和不合格(Ⅳ类)四个等级。本文的研究为通信网络效能评估探索了一条有效的方法。  相似文献   

19.
盖印 《科学技术与工程》2011,(29):7202-7207
随着新经济时代的到来,企业关键业务流程的知识密集程度越来越高,企业需要探寻更为有效的业务流程设计方法。为此,选择流程知识为设计方法研究的基础信息,从中获取控制流及相关知识流的结构缺陷和改进环节,实现目标业务流程的设计和优化。以某轿车厂的设备工装采购过程为例,将本研究提出的方法应用于设备工装采购的流程设计工作中,说明其科学性和有效性。  相似文献   

20.
在给出用例及其相关概念的形式化定义的基础上,构建了从用例到Petri网模型的映射算法;提出了一种基于用例和Petri网的业务过程建模方法.它先以用例来捕获需求,再用Petri网来图形化用例,以此来实现它们各自优势的互补.并且通过引入工作流建模中任务(task)这一概念来统一了用例描述的语法形式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号