首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
采用喷雾干燥方法合成了高电压锂离子电池正极材料LiMn 1.5Ni 0.5O4,并研究了其电化学性能.研究发现,室温条件下,在3.20~4.95 V的充放电电压范围,LiMn 1.5Ni 0.5O4的首次可逆容量为132 mAh/g, 并显示出良好的循环性能,在3.20~4.50 V 和4.50~4.95 V两个电压区间内,首次可逆容量分别为25和100 mAh/g.而在高温下,该电极材料的电化学性能发生了明显的改变.  相似文献   

2.
以醋酸锂、醋酸锰和醋酸镍为原料,羟基乙二酸为螯合剂,通过溶胶-凝胶法制备层状LiMn0.5Ni0.5O2正极材料,得到的产物具有典型的α-NaFeO2层状结构,颗粒尺寸在300-400nm之间。对900℃下制得的层状LiMn05Ni0.5O2在2.5-4.3V之间进行充放电测试,电流密度为0.1mAcm^-2,其首次放电容量达到了161.2mAh g-^1。经过20次循环后,仍然保留了初始容量的88%。  相似文献   

3.
LiMn2O4是一种含锂的尖晶石结构化合物,充放电反应过程中这种化合物能提供锂离子在正负极之间嵌入-脱出循环所需要的三维通道. 该文给出在LiMn2O4中添加一定量的过渡金属元素Ni来高压煅烧优化其性能. 所制备的LiMn1.5Ni0.5O4显现出较好的纯相尖晶石结构,电化学性能测试表明在10 C放电倍率下循环3 000周后仍保持初始容量的80%.  相似文献   

4.
采用共沉淀-喷雾法合成出层状LiNi0.5-xCo2xMn0.5-xO2(x=0,0.075,0.15)正极材料,研究了不同掺钴量对材料的结构和电化学性能的影响,并用XRD、SEM及电性能测试考察了所得材料的结构、形貌与电化学性能;XRD分析表明,LiNi0.5-xCo2xMn0.5-xO2具有α-NaFeO2层状结构,Co3+的掺入可促进层状结构的生成,有效减少阳离子混排。电性能测试结果显示,LiNi0.5-xCo2xMn0.5-xO2随着掺钴量的增大,放电容量提高,循环性能变好;样品LiNi0.35Co0.3Mn0.35O2表现出最好的电化学性能,其首次放电效率充放电效率达90%,首次放电容量为172.8 mAh/g,40次循环容量无明显衰减。  相似文献   

5.
用共沉淀法合成了Li Ni0.5Mn0.5O2材料.为了探索共沉淀法合成Li Ni0.5Mn0.5O2的最佳工艺,详细研究了研磨时间、pH值、预处理温度、煅烧温度、煅烧时间和冷却方式等对材料结构的影响.以氢氧化锂为锂源,Ni(NO3)2.6 H2O和Mn(Ac)2.4 H2O为镍源和锰源,锂与镍、锰物质的量比为1.1∶0.5∶0.5,经强氧化剂处理,900℃下煅烧12 h后经淬冷制备了Li Ni0.5Mn0.5O2样品.采用XRD,Raman和XPS对该样品进行了分析,结果表明:材料为标准的α-NaFeO2层状结构,属于六方晶系;镍以正二价的形式存在,锰主要以正四价存在,非常接近理论计算的理想结构.  相似文献   

6.
运用溶胶-凝胶法成功合成了层状锂离子电池正极材料LiNi0.5Mn0.5O2的纳米粒子,并利用XRD,TEM,SEM手段进行了表征,电化学测试性能满意.在电压范围为2.5-4.5 V和电流密度为0.1 mA·cm-2的条件下,该正极材料能释放出159.8 mA h·g-1/Li的容量.  相似文献   

7.
以CH_3COONa,Ni(CH_3COO)_2·4H_2O和Mn(CH_3COO)_2·4H_2O为原料,经过溶解、干燥和焙烧,得到产物Na(Ni_(0.5)Mn_(0.5))O_4.利用XRD,SEM对材料进行了结构和形貌的分析,结果显示产物含有少量的NiO相,呈片状形貌,颗粒小于5μm,有一定程度的团聚.对材料进行了不同倍率的充放电性能测试,产物展示了较好的电化学性能,0.1,0.2,0.5,1和5倍率时的放电容量分别为124,121,116.7,110.1和73.8mA·h/g.产物在2.0~4.0V电压区间充放电循环30次后,室温和55℃下的容量保持率分别为94.8%和91.1%,显示具有较好的高温性能,可以作为钠离子电池正极材料.  相似文献   

8.
研究了以Li4Ti5O12为负极,分别以LiCo0.5Ni0.5Mn0.5O2,LiMn2O4或LiFePO4为正极的锂电池体系. 先筛选不同厂家的正负极材料,然后再匹配成电池做循环性能研究. 测试表明,经筛选的LiCo0.5Ni0.5Mn0.5O2,LiMn2O4与LiFePO4三种材料分别与Li4Ti5O12组成电池的初始容量分别为963、931、960 mAh;500次充放电循环后容量保持率分别为96.56%、87.69%、98.1%. 其中LiCo0.5Ni0.5Mn0.5O2体系的初始容量最高,LiFePO4体系的循环性能最好. 3种不同正极材料的钛酸锂锂离子电池在85 ℃环境下搁置4 h,电池形变少于5%.  相似文献   

9.
目的制备离子电池正极材料LiNi_(0.5-x)Mn_(0.5-x)Zr_(2x)O_2微米球,并研究其电化学性能与掺杂Zr4+量的关系。方法以NiSO4·6H2O,MnSO4·H2O和Na2CO3等为原材料通过共沉淀的方法制备前驱物(Ni0.5Mn0.5)CO3,然后前驱物与ZrO2,Li2CO3混合均匀,在500℃下煅烧3h,900℃下煅烧16h得到正极材料LiNi_(0.5-x)Mn_(0.5-x)Zr_(2x)O_2。结果 X射线衍射分析证明得到的产物为纯相,扫描电子显微镜图像显示得到的产物具有3~5μm左右的微米球形结构,并对锂离子电池的电化学性能进行了研究。结论 LiNi0.5Mn0.5O2掺杂了Zr4+后能有效降低锂/镍混排度,而且可提高具有微米球结构的LiNi_(0.5-x)Mn_(0.5-x)Zr_(2x)O_2系列锂离子电池正极材料的电化学性能。  相似文献   

10.
采用离子交换法制备出层状结构锂离子电池正极材料LiMn1-xCoxO2(0.1≤x≤0.5)。X射线衍射和扫描电镜进行分析表明材料具有明显的层状结构和良好的结晶性。电化学性能研究表明,LiMn0.5Co0.5O2的最高放电容量为175mAh/g,并且具有良好的循环性能,在3.0~4.5V的冲放电电压范围内,经过20次循环,可逆容量达95%。对实验结果的研究表明,随着Co含量的增加,材料具有更明显的层状性能和更优的循环性能。  相似文献   

11.
采用化学溶液沉积法制备了La0.5Sr0.5Ti O3(LSTO)外延薄膜作为第二代高温超导带材YBCO涂层导体的缓冲层.以乙酸镧、碳酸锶和钛酸丁酯为前驱物,配制了La离子浓度为0.14 mol/L的前驱液,经旋转涂覆和适当的热处理制得LSTO薄膜.对薄膜前驱粉末进行了热重与差热分析,确定了LSTO的合成过程.X射线衍射分析表明,在840,890℃恒温60 min的热处理后样品薄膜为单相的LSTO,具有明显的(100)择优生长取向,缓慢升温更有利于LSTO薄膜的结晶.扫描电镜结果表明:LSTO薄膜表面光滑致密,采用四探针法测得薄膜电阻率约为1×10-2Ω.cm.这种方法制取的LSTO薄膜电阻率小,外延性好,可作为YBCO涂层导体的导电缓冲层.  相似文献   

12.
合成了稀土配合物Sm(Hacac)2HAA和Sm0.5Eu0.5(Hacac)2HAA并通过红外光谱、元素分析确定了其组成,探讨了它们的光谱特征.结果表明:Sm(Hacac)2HAA和Sm0.5Eu0.5Hacac)2HAA的均发出Sm3+的特征光谱,发射峰在647 nm;Eu3+的掺入提高了配合物Sm0.5Eu0.5...  相似文献   

13.
目的制备(K0.5Na0.5)NbO3(KNN)无铅压电陶瓷并研究其结构和性能。方法采用传统固相法,用XRD,SEM等手段对KNN无铅压电陶瓷材料的相结构和显微形貌进行了表征。结果KNN压电陶瓷材料为单一的正交晶系的钙钛矿结构。对KNN无铅压电陶瓷的电性能测试表明,KNN陶瓷具有高的压电常数d33=127 pC/N,高的机电耦合系数Kp=0.41,高的温度Tc=428℃和低的介电损耗tanδ=0.028(10 kHz)的优点;KNN陶瓷存在着饱满的电滞回线,其剩余极化率Pr为18.8μC/cm2,其矫顽场Ec为9.65 kV/cm;所得的陶瓷的密度和电性能要远优于用同样制备方法和烧结方式所得的陶瓷的性能,并且也优于用等静压工艺所得的陶瓷的性能。结论KNN陶瓷是高频压电器件较理想的备选材料之一。  相似文献   

14.
综述了国内外关于(Na0.5Bi0.5)TiO3(简称BNT)基无铅压电陶瓷材料的发展进程及研究现状,着重介绍了BNT基无铅压电陶瓷的制备工艺和掺杂改性,并对其发展趋势进行了展望.  相似文献   

15.
通过改变微波烧结温度和保温时间,优化Ca( Sm0.5 Nb0.5) O3 (CSN)陶瓷的微波烧结工艺,用X线衍射仪(XRD)、扫描电镜(SEM)和微波网络分析仪等对试样进行表征.从相组成、显微结构及微波介电性能等方面对微波烧结试样与常规烧结试样进行对比分析.结果表明:微波烧结可大幅降低CSN的烧结温度,促进试样的致密化,其物相组成和传统烧结试样无明显差别;微波烧结还可以改善CSN陶瓷的微波介电性能,在1 375℃微波烧结30 min可获得优异的微波介电性能,介电常数(εr)=20.08,品质因数(Q×f)=37.03 THz,谐振频率温度系数(Tf)=-10.2×10-6℃-1.  相似文献   

16.
采用传统陶瓷工艺制备了CeO2掺杂(Bi0.5Na0.5)0.94Ba0.06TiO3(缩写为 BNBT6)无铅压电陶瓷.研究了CeO2掺杂量(0~1.0wt%)对BNBT6陶瓷的密度、相结构、微观结构及介电与压电性能的影响.XRD表明,CeO2掺杂量在0~1.0%wt之间变化,没有改变BNBT6陶瓷纯的钙钛矿结构.SEM表明,少量的CeO2掺杂,改变了陶瓷的微观结构.介电温谱表明,随着CeO2掺杂量的增加,铁电相向反铁电相转变温度(Td)降低. 室温下,CeO2掺杂量为0.4wt%时,BNBT6陶瓷样品有很好的性能:密度为5.836g/cm3,压电常数为136pC/N,平面机电藕合系数为30.3%, 相对介电常数为891, 介电损耗为0.0185.  相似文献   

17.
Through an analysis of the temperature stability of(K0.5Na0.5)NbO3(KNN)based ceramics and KNN solid solutions,we propose a method to enhance the temperature stability of KNN materials.These materials are valuable for their piezoelectric properties.To verify the feasibility of this method,0.9(K1-xNax)NbO3-0.06LiNbO3-0.04CaTiO3(KNLN-CaTiO3)ceramics were designed,and their structure and properties were studied.The results show that KNLN-CaTiO3(x=0.54)ceramics have a good temperature stability over a wide temperature range(25-320°C).Also,they have good piezoelectric properties(d33=152 pC/N in x=0.54).This result confirms the feasibility of our proposed solution for improving the piezoelectric properties of KNN-based ceramics that have poor temperature stability.  相似文献   

18.
在本工作中,首次用近红外光致发光法观察到在GaAs衬底上用金属有机化学相沉积方法(MOCVD)生长的Ga_(0.5)In_(0.5)P外延薄膜所发射的1.17、0.99及0.85eV的个新发光峰。其中只有1.17eV发射与Ga_(0.5)In_(0.5)P外延薄膜的部分有序结构有关。实验获得的1.17eV发射的变温与变激发强度特性可用受主-施主对复合来很好地给予解释。该受主-施主对系由镓空位作为受主及与其最邻近的镓子格子上的碳作为施主所组成。在考察Ga_(0.5)In_(0.5)P外延薄膜的部分有序结构与其受主-施主对复合能间关系的基础上,导出了受主-施主对跃迁的新的能量方程。  相似文献   

19.
以五氧化二铌和钾、钠及锂的碳酸盐为原料,以柠檬酸为螯合剂、乙二醇甲醚为添加剂,采用溶胶-凝胶法制备了0.94(K0.5Na0.5)NbO3-0.06LiNbO3无铅压电陶瓷粉体.研究了各种工艺条件对前驱体溶液和凝胶形成的影响,利用TG—DTA、XRD及SEM等技术研究了凝胶焙烧温度、焙烧粉体的粒度及晶形状况.研究结果表明:柠檬酸与金属离子的物质的量比[n(CA)/n(Mn^+)]及pH值是影响前驱体溶液和凝胶形成的主要因素.用溶胶-凝胶法合成KNLN6粉体,具有合成温度低,合成的粉体晶粒细小,分散均匀等优点.  相似文献   

20.
LiNi0.5Co0.5O2的制备及其电化学性能   总被引:2,自引:2,他引:2  
分别以碳酸盐和氢氧化物为原料,合成了LiNi0.5Co0.5O2.研究结果表明:用氢氧化物为原料,在氧气气氛中,适当提高合成温度和延长反应时间均有利于LiNi0.5Co0.5O2晶格结构的完整;在740 ℃和氧气气氛下,以氢氧化物为原料反应15 h可以合成结构理想的LiNi0.5Co0.5O2;LiNi0.5Co0.5O-2的初始放电容量与LiCoO2的初始放电容量相当,达到141.3 mA·h/g,以LiNi0.5Co0.5O2为正极的电极系统具有稳定的电压输出和良好的循环性能,经200次循环后放电容量保持率为82%,可作为LiCoO2的廉价替代物.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号