首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用SST k-ω湍流模型对仿生矩形射流表面的减阻特性进行数值模拟,解释了射流表面减小摩擦阻力的原因及对近壁区边界层的控制行为.结果表明,射流孔面积相等时,射流孔与射流表面沿展向长度的比值越大,减阻效果越好.当其它因素不变时,随着射流速度的增大减阻率逐渐增大,随着射流流量的增大减阻率逐渐增大,最大减阻率为35.97%.射流表面对边界层的控制行为表现为主流场近壁区的剪切流动遇到射流的阻抗,在射流孔的背流面形成逆流区,逆流在边界层底层产生的剪应力与主流场方向相反;同时在射流孔下游产生反向旋转涡对并在近壁面诱导出二次涡,相当于在高速流体与壁面之间产生润滑带,使边界层黏性底层厚度增大,速度梯度减小,摩擦阻力减小.  相似文献   

2.
以简化准三维模型D型钝体为研究对象,通过数值仿真手段,利用零质量合成射流器理论进行了D型体主动流动控制和主被动结合的流体控制研究发现,在尾部分离点进行射流控制时,高频射流有助于钝体减阻,减阻效果可以达到1.78%。主被动结合的锯齿和射流加强了尾迹三维流动结构,破坏了准三维模型的展向流动结构,使得减阻效果较好。采用主被动结合控制的射流为低频和高频时减阻效果为20.86%和21.20%。  相似文献   

3.
采用数值模拟方法研究了基于合成射流技术的高空飞艇流动控制方法。将合成射流装置安放在飞艇表面,靠近分离线处,并沿分离线布置,通过合成射流口吹吸空气产生涡流,并将其注入边界层内来达到延缓流动分离,进而达到减阻和大迎角阵风减缓的目的。研究首先利用对原始飞艇进行仿真,找到分离线的位置,进而研究了合成射流口出射速度幅值不同时飞艇阻力系数的变化,并以此来分析合成射流的流动控制效果。结果表明,射流口吹吸速度幅值越大,时均减阻效果越好,但射流的能量消耗也越大,气动力的脉动幅值也大。在扣除合成射流本身的能量消耗影响以后,最优的时均控制效果发生在迎角30°左右。研究结果显示,合成射流可以用来降低飞艇小迎角下的巡航阻力,也可以用来控制大迎角情况下的瞬态气动力,从而作为阵风减缓措施。  相似文献   

4.
为了研究多因素耦合对射流表面减阻特性的影响,运用可拓学基本原理建立主流场速度、射流速度、射流孔高排布、射流孔底排布等特征耦元及其耦合方式的可拓模型,利用标准k-ε湍流模型对射流表面多因素耦合条件下的减阻特性进行数值模拟,分析射流表面黏性阻力和减阻率减小的原因,以及射流表面多因素耦合对射流孔附近壁面流域边界层的控制行为.结果表明:射流表面多因素耦合的减阻效果较好,最大减阻率为27.69%;多因素耦合条件下的射流表面改变了壁面剪应力分布,影响了边界层的结构,同时,在射流孔下游形成的漩涡改变了边界层的厚度,导致壁面黏性阻力降低,从而使得射流表面具有较好的减阻效果.  相似文献   

5.
为了研究涡旋射流控制流动分离的物理机理,基于大涡模拟方法对涡旋射流控制下的矩形扩压器流场和射流流向涡结构的生成、发展等动力学演化过程进行了数值研究.结果表明:射流产生的流向涡将主流高动量气流带入分离区,增加了边界层内气流流动方向的动量,使流动分离得到了抑制.射流流场的涡结构主要由射流剪切层涡、马蹄涡、尾涡组成,由于速度梯度大小的变化,使得射流剪切层涡系的结构随着时间推移从涡卷演化为涡环.对于脉冲射流,在低频脉冲下,射流产生的流向涡呈涡卷结构,流动控制效果明显.在高频脉冲下,射流剪切层涡演变成间歇涡环结构,流动控制效果减弱.通过对比脉冲频率和占空比对流动控制的影响发现,占空比为0.5、频率为20Hz的脉冲射流具有较好的流动控制效果.  相似文献   

6.
为考察等离子体合成射流流动控制效果,在NACA0021二维机翼模型上安装单个等离子体合成射流,开展低速风洞试验。采用烟流显示技术,定性观察了不同攻角和加载电参数下等离子体合成射流对流动分离的控制效果,并使用PIV技术对流动控制效果进行了定量研究。实验结果表明,在一定频率范围内(80~240 Hz),频率增加会减弱射流流动控制能力;加载电压幅值的影响较小;在一定范围内提高占空比(5%~15%),可增强射流的流动控制能力;在一定攻角范围内(0~19°),烟流流动显示结果与PIV测量所得的规律相似,在小攻角下,等离子体合成射流使得翼型吸力面层流变为紊流;在大攻角下,射流则起到抑制流动分离的作用,随着攻角的增加,抑制流动分离的效果减弱。  相似文献   

7.
为探索孔口构型对合成射流激励器流动控制效果的影响,采用数值方法研究了4种不同孔口构型的合成射流激励器对大攻角20。下NACA0015翼型分离流动的控制特性。通过对翼型气动力特性、脱落旋涡结构以及射流孔口附近流动结构的分析,阐述了合成射流的边界层分离控制机理。首先在距离翼型前缘10%、20%、30%弦长位置安装激励器进行数值模拟,得到20%弦长的激励器方案效果最好。然后在此位置处,采用设计出的“凸台型、凹台型、斜出口”以及常规平台型等4种孔口构型的激励器进行流动分离控制。结果表明,在所有方案中,流动控制效果最佳的方案是喷口向流动方向倾斜的孔口构型;在这种方案下,射流与主流掺混使得边界层的动能增大,抗反压能力增强,并且由于喷出的气流方向与主流方向夹角很小,掺混后的气流流动方向与主流相近,从而使得边界层分离被大大削弱甚至消失。  相似文献   

8.
本文介绍用于北斗三号卫星导航系统的星载铷原子钟主要设计特点和性能指标.铷原子钟频率稳定度主要取决于原子跃迁信号信噪比、电路噪声和原子体系的物理环境效应.为提高原子信号信噪比,物理系统采用了微波场方向因子高于0.9的开槽管微波腔和Xe气启辉的铷光谱灯,并采用了光学滤光和同位素滤光双重滤光方案.电路系统采用了低相噪微波链路,交互调制噪声对铷原子钟稳定度的影响被控制在4.9×10-131/2水平.通过工作参数优化,将物理环境效应对天频率稳定度的影响降低到3×10-15以下.研制了高精度和甚高精度两型号星载铷原子钟.高精度铷原子钟典型指标为短稳1.5×10-121/2,万秒稳1.3×10?14,天稳9.4×10-15;甚高精度铷原子钟典型指标为短稳6.1×10-131/2,万秒稳7.1×10-15,天稳3.9×10-15.本文还分析了铷原子钟最新研究进展,预期铷原子钟的性能还可以进一步提升.  相似文献   

9.
基于Langtry-Menter转捩模型的SST湍流模型,通过求解三维非定常雷诺时均Navier-Stokes方程,数值研究了低雷诺数下合成射流涡发生器对Pak-B低压透平叶片吸力面流动分离的影响,揭示了低压透平叶片表面合成射流非定常流动的控制机理.结果表明,引入合成射流涡发生器能够抑制甚至消除低雷诺数下叶片吸力面上的流动分离.在雷诺数为25 000、自由流湍流强度为0.08%下,提高射流控制频率有助于增强合成射流涡发生器对低压透平叶片表面流动分离的控制效果,减少流动损失.当控制频率为10Hz时,叶栅出口的相对总压损失系数为0.42;当控制频率增加到20Hz时,相对总压损失系数仅下降到0.41.这表明,当合成射流控制频率大于10Hz时,继续增加控制频率来减少叶片表面流动损失的效果是不明显的.  相似文献   

10.
针对射流表面流场特性,运用可拓学基本原理,建立主流场速度与射流速度耦元、耦合方式的可拓模型.利用RNG k-ε湍流模型对射流表面主流场速度与射流速度耦合情况下减阻特性进行数值模拟,研究射流表面减小黏性阻力和压差阻力的原因及对射流孔附近壁面流域边界层控制行为.研究结果表明:主流场速度越小与射流速度越大耦合情况下射流表面减阻效果最好,节能效果明显;主流场速度与射流速度耦合对边界层的控制行为表现在射流表面模型使射流孔下游流域黏性底层厚度减小,边界层厚度降低,导致壁面所受黏性阻力减小;同时形成的反向漩涡在壁面形成的反向流对仿生射流表面产生逆流向的推动作用,对压差阻力产生抑制效应.  相似文献   

11.
涡旋射流控制逆压梯度平板边界层分离的涡结构研究   总被引:2,自引:0,他引:2  
为了研究涡旋射流控制边界层分离的物理机理,设计、搭建了涡旋射流控制逆压梯度平板边界层分离实验台,在此基础上对低雷诺数下平板边界层分离及射流控制进行了实验和数值研究.通过对比不同射流控制方式的统计特性及射流控制效果,揭示了射流流场大尺度相干结构的演化规律.射流瞬时流动细节的研究表明:发卡涡和类发卡涡是逆压梯度环境下直射流和斜射流中比较典型的涡结构;在斜射流中,随着类发卡涡的发展,射流孔下游发展成熟的类发卡涡涡腿外侧出现了不断增强的次生流向涡结构;次生涡结构对壁面附近能量的增大和质量的输运、耗散具有重要的作用.经对比发现,斜射流控制流动分离的效果明显优于直射流.  相似文献   

12.
合成射流控制下低压高负荷透平叶片边界层分离大涡模拟   总被引:1,自引:0,他引:1  
为了研究合成射流对低压高负荷透平叶片边界层流动分离进行控制的效果及机理,采用大涡模拟方法对利用合成射流控制低压高负荷透平Pak-B叶栅内的非稳态流动分离特性进行了研究.在合成射流控制下的结果表明:Pak-B叶栅吸力面流动分离位置变化不大,再附位置明显提前,叶栅吸力面尾缘区域逆压梯度明显减小,总压损失系数降低,分离泡尺寸缩小;叶栅吸力面大部分剪切层黏附于壁面,也未出现大尺度二维展向涡,静压脉动特征频率向高频转移,低频脉动幅值降低,大尺度涡旋结构发生变化.通过研究还发现:在吹气过程中,边界层外部高能流体被射流卷吸进入边界层内,边界层内流体能量增大进而抑制了分离;在吸气过程中,射流孔上游区域边界层厚度减小,流速增大,从而抑制了下游流动分离.  相似文献   

13.
文章基于SMIC 0.18μm互补金属氧化物半导体(complementary metal oxide semiconductor, CMOS)工艺,设计了一种频率与温度无关的片内电流模RC振荡器,该振荡器采用1.8 V电源供电,输出频率为100 MHz,振荡器主要由温度补偿电流源、开关电容充放电回路、反相器比较延时单元以及时钟输出单元组成。通过Cadence Spectre仿真验证表明:在-40~125℃范围内,TT工艺角条件下,振荡器的输出频率范围为100.06~100.16 MHz,频率随温度变化为0.10%,用温度系数表示为6.06×10-6-1;SS工艺角条件下,振荡器的输出频率范围为99.90~100.23 MHz,频率随温度变化为0.33%,用温度系数表示为20.00×10-6-1;FF工艺角条件下,振荡器的输出频率范围为99.96~100.07 MHz,频率随温度变化为0.11%,用温度系数表示为6.67×10-6-1。  相似文献   

14.
曲面冲击换热在飞机机翼前缘防除冰上有着广泛应用.为了进一步提高翼型前缘防除冰性能,采用数值模拟依次探索了不同翅片阵列在平板和曲面上的冲击换热特性.平板模型的翅片阵列包含8片、12片直翅片以及12片弯翅片3种结构;曲面模型包括8片短翅片和8片长翅片两种阵列结构.仿真结果表明:在平板和翼型曲面上添加翅片阵列可以显著提高模型在不同雷诺数下的射流冲击换热性能;与无翅片相比,翼面上的换热效果整体提升高达4%~10%,其中在驻点位置处的强化换热效果最为明显.深入分析发现,引入的翅片阵列一方面增大了强化换热面积,同时也改变了冲击射流流动结构,从而增强了射流冲击换热的效果.  相似文献   

15.
采用数值方法,对流体振荡器在S形进气道流动分离中的控制效果进行了仿真研究。应用CFD软件模拟计算了流体振荡器对进气道分离控制的作用,详细讨论了不同射流频率和射流角度对控制效果的影响。通过对流场的分析得出:射流频率和射流角度对控制效果有显著影响。射流频率为554 Hz,射流角度为45°时,控制效果最佳,总压恢复系数增加了0.403%,总压畸变指数减少了6.96%,分离区长度减少了8.07%。  相似文献   

16.
文章设计了一种基于环烯烃共聚物(cyclic olefin copolymer, COC)的空芯负曲率光纤(negative curvature fiber, NCF),分析结构参数光纤芯径、管径和毛细管厚度对光纤限制损耗的影响,并对参数进行优化,使得单包层NCF在2.0~2.5 THz频率范围内限制损耗为10-4~10-5 dB/m,损耗最低值可降到8.90×10-5 dB/m;引入内包层管破坏常规负曲率光纤的对称性,使纤芯模式与内包层管壁模式进行耦合,从而增加x和y偏振方向的折射率和损耗差异产生双折射;对影响光纤双折射特性和限制损耗的因素进行分析,在2.0~3.0 THz频率范围内双折射系数可达到10-4~10-5。该文结果为太赫兹NCF的长距离传输、偏振敏感等应用提供了一条新的途径。  相似文献   

17.
利用 2008年探空资料分析了北京地区水汽廓线的分布特征, 提出不同边界层状况下水汽廓线的参数化方案。 在稳定边界层或浅对流边界层条件下, 水汽廓线的参数化方案可以用q=q0ez/2624(q0为地面水汽比湿)表示。在对流边界层条件下, 水汽垂直分布受大气边界层影响非常显著, 参数化方案可以采用: 1) 对流边界层内(0≤z0; 2) 对流边界层高度附近(|z-PBL|<200), q=q0(A-B(z-PBL)); 3) 对流边界层高度之上(PBL+200≤z), q=Cq0(z-5000-PBL) (z和PBL分别为距地面高度和对流边界层高度, 单位均为m)。参数分别为A=0.72, B=1.4×10-3m-1, C=-9.17×10?5m-1。在对流边界层下, 水汽廓线的参数化方案如果仅采用e指数分布会低估10%的水汽总量, 而新提出的参数化方案能更好地给出水汽的垂直分布。  相似文献   

18.
等离子体流动控制技术具有结构简单、响应迅速等特点,已成为流动控制领域的研究热点。为减小飞机的湍流摩擦阻力, 提出了一种基于方格网状等离子体激励器的新型湍流减阻方法,研究了其放电特性与诱导流动特性,并在风洞中获得该激励器减小NACA0012翼型湍流摩擦阻力的参数规律。结果表明,静止条件下,方格网状激励诱导的射流速度与占空比成正比,而随脉冲频率的增大先增加后减小,诱导射流的最大瞬时速度为1.75 m/s。来流速度为15 m/s时,激励能使翼型湍流摩擦阻力减小3.5%。方格网状激励诱导产生的射流使近壁面流体整体抬升,破坏近壁面涡结构,进而抑制湍流生成,实现摩擦减阻。  相似文献   

19.
研究结果表明展向振荡电磁力可控制湍流边界层,电磁力的振荡频率对湍流的控制效果有影响,但并未讨论电磁力振荡频率对控制效果的影响机理。实验研究了不同频率展向振荡电磁力控制翼型绕流的减阻效果及其影响机理。实验在转动的水槽中进行,在翼型的背风面包覆展向振荡电磁力激活板,并将其浸入水槽中,利用应变传感器测量翼型的阻力,基于意法半导体公司生产的微处理器开发电磁力控制器,用于控制电磁力的方向和振荡频率。研究结果表明展向振荡电磁力对翼型绕流具有减阻效果,对比分析了不同频率的展向振荡电磁力的减阻效果,发现电磁力的振荡频率为20 Hz时减阻效果较优,减阻效率可达到18%;展向振荡电磁力可减小翼型阻力的振动幅值,具有减震功能;当电磁力的振动频率与阻力曲线内小波动频率相近时,电磁力的减阻减震的效果最佳。  相似文献   

20.
为探索大迎角下介质阻挡放电(DBD)对高升力机翼的作用机理,采用体积力模型和Eddy Viscosity Transport Equation全湍流模型耦合进行DBD激励改善其气动特性的模拟仿真研究。在来流速度45 m/s条件下,对比实验数据与仿真模型,验证了仿真模型的正确性;并采用该模型分析了机翼弦向、展向的2组截面流线图。结果表明:DBD激励位于机翼前缘能很好地提高高升力机翼大迎角气动特性,显著改善上翼面涡结构,促进分离流附体;可将机翼最大升力系数提高11.1%,失速迎角推迟2°,且随迎角增大,流动控制效果逐渐减弱直到消失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号