首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于改进卷积神经网络的苹果叶部病害识别   总被引:2,自引:0,他引:2  
针对苹果病害叶片图像病斑区域较小导致的传统卷积神经网络不能准确快速识别的问题,提出基于改进卷积神经网络的苹果叶部病害识别的网络模型.首先,将VGG16网络模型从ImageNet数据集上学习到的先验知识迁移到苹果病害叶片数据集上;然后,在瓶颈层后采用选择性核(selective kernel,简称SK)卷积模块;最后,使用全局平均池化代替全连接层.实验结果表明:与其他传统网络模型相比,该模型能更准确快速捕获苹果病害叶片上微小的病斑.  相似文献   

2.
针对在有冗余图像信息干扰下进行人脸有效特征点提取时精度不高的问题,提出了基于级联卷积神经网络的人脸特征点检测算法.在该算法中:输入层读入规则化的原始图像,神经元提取图像的局部特征;池化层进行局部平均和降采样操作,对卷积结果降低维度;卷积层和池化层分布连接,迭代训练,输出特征点检测结果.该算法采用Python语言编程实现,在人脸数据集进行仿真实验,结果表明该算法对人脸特征点有较高的识别率.  相似文献   

3.
针对钢桥病害识别效率低、精度不高的现状,提出了一种基于深度学习的钢结构表观病害识别方法.该方法将卷积神经网络Inception-v4和迁移学习相结合,分别采用迁移学习中特征提取和微调2种训练方式获得2种模型,并与全新训练的Inception-v4模型进行对比.首先,收集656幅钢桥病害图像,包括涂层劣化176幅,腐蚀1...  相似文献   

4.
由于人脸姿态、表情、遮挡物、光照问题的影响,人脸关键点检测时通常会出现较大的误差,为了准确且可靠地检测关键点,提出了一种基于级联卷积神经网络的方法。利用人脸检测器检测到的人脸图像作为输入,第一层卷积神经网络直接检测所有的5个人脸关键点。随后根据这些检测到的点裁剪出5个人脸局部图像,级联的第二层网络使用5个不同的卷积神经网络单独地定位每个点。在实验测试环节,级联卷积神经网络方法的使用将人脸关键点的平均定位误差降低到了1.264像素。在LFPW人脸数据库上的实验结果表明:该算法在定位准确性和可靠性上要优于单个CNN的方法以及其他方法,该算法在GPU(图形处理器)模式下处理一个人脸图像仅需15.9毫秒。  相似文献   

5.
为了解决大部分基于深度学习的方法直接提取深度抽象特征,无法在速度与精度上取得均衡问题,该文将传统的级联框架与深度卷积神经网络结合,提出了一种新的基于级联的由浅至深的卷积神经网络人脸检测方法。首先通过融合全脸与部分人脸的全卷积神经网络置信图谱快速定位人脸候选区域,然后采用深度神经网络提取人脸鲁棒性特征,对候选区域进一步分类验证,并用联合回归的方法确定最终人脸位置,提高检测精确度。所提出的方法与一些代表性的算法对比和分析,在FDDB、AFW权威评测集上达到了可比较的精度,且能快速地进行检测。  相似文献   

6.
农产品检测技术一直以来都是农业领域研究的热点问题,但以往的识别的错误率都居高不下,该文采用了基于有深度学习机制的卷积神经网络方法来提高识别率.首先对采集到的图像进行预处理得到规范化的二值化图像,再利用Matlab软件进行神经网络的建模,利用其网络自学习能力进行训练与测试,通过仿真验证卷积神经网络对辣椒图像的精确识别率.并与传统BP神经网络进行比较,表明其具有很好的鲁棒性和泛化能力.  相似文献   

7.
为了解决银行、邮局等场合的实时数字识别问题,提出了一种优化的卷积神经网络(Convolutionnal Neural Network,CNN)数字识别方法。以Lenet-5模型为基础改进了卷积神经网络结构并推导了改进后的前向和反向传播算法,将改进的卷积神经网络在手写、印刷数字组合数据库上进行测试,分析了不同样本数量、训练迭代次数等参数对识别准确率的影响,并与传统算法进行比较分析。结果表明改进后的CNN结构简单,处理速度快,识别准确率高,具有良好的鲁棒性和泛化性,识别性能明显高于传统网络结构。  相似文献   

8.
随着深度学习的发展,使用深度卷积神经网络进行关键点定位受到了广泛关注.虽然在人体姿态、人脸识别等多个方面的关键点定位技术已经获得了长足的发展,但是应用于服饰的关键点定位由于其图像背景以及姿态等的多变性依然面临很大的挑战.服饰关键点定位技术在电商以及时尚搭配等方面有很大应用价值,本文将关键点定位应用于时尚领域,提出一种基于级联卷积神经网络的服饰关键点定位算法.该算法的目的是通过级联的两级卷积神经网络,实现对服饰关键点的初步定位以及对困难关键点的定位调整.算法的第1级以深度残差网络作为特征提取网络,在特征金字塔结构中引入空洞卷积,解决高层特征图感受野大但是空间分辨率低的问题,从而保留更多图像底层细节信息,实现对关键点的初步定位;第2级将第1级网络得到的定位结果作为关键点之间的结构先验,结合沙漏网络提取多尺度特征,对困难关键点进行精细调整,进一步提高定位精度.实验选用2018Fashion AI服饰关键点定位数据集进行训练和测试,将该数据集中对服饰关键点定位的平均归一化误差结果降低到3.56%,充分验证了算法的有效性.与几种常见关键点定位算法进行对比,本文算法在服饰关键点定位任务中取得最好效...  相似文献   

9.
基于级联卷积神经网络的番茄果实目标检测   总被引:2,自引:0,他引:2  
为了使采摘机器人在收获番茄时更加精准地识别目标果实,采用改进后的Cascade RCNN网络对温室内的番茄果实进行目标检测.将Cascade RCNN网络中的非极大值抑制算法替换为Soft-NMS(soft non-maximum suppression)算法,采用适合番茄形状的锚框,增强网络对重叠果实的识别能力,与原...  相似文献   

10.
面向农作物病害识别的高阶残差卷积神经网络研究   总被引:1,自引:0,他引:1  
当前研究农作物病害的准确识别工作中,针对简单背景的农作物病害图像识别取得了巨大成功,但当面向包含有各种噪声和复杂背景真实场景的农作物病害图像识别问题时,难以满足识别准确率的要求.为此提出了一种新的面向农作物病害识别应用的高阶残差卷积神经网络方法,以实现农作物病害的准确、抗干扰的识别.实验结果表明,该方法具有高准确率、强鲁棒性和良好的抗干扰能力,能较好地满足农作物病害识别的实际应用需求.  相似文献   

11.
基于卷积神经网络的连续语音识别   总被引:3,自引:0,他引:3  
在语音识别中,卷积神经网络( convolutional neural networks,CNNs)相比于目前广泛使用的深层神经网络( deep neural network,DNNs),能在保证性能的同时,大大压缩模型的尺寸。本文深入分析了卷积神经网络中卷积层和聚合层的不同结构对识别性能的影响情况,并与目前广泛使用的深层神经网络模型进行了对比。在标准语音识别库TIMIT以及大词表非特定人电话自然口语对话数据库上的实验结果证明,相比传统深层神经网络模型,卷积神经网络明显降低模型规模的同时,识别性能更好,且泛化能力更强。  相似文献   

12.
针对无人机平台获取的高分辨率可见光松树图像,提出一种结合深度卷积神经网络和Adaboost算法的病害松树识别方法,解决传统机器学习方法识别病害松树精确度不高问题.首先利用卷积神经网络训练病害松树模型再利用训练模型将地物中的田地、裸土及黑影等复杂信息剔除掉,提取病害松树、健康松树及黑影区域的颜色和纹理特征,依据提取的特征在剔除地物干扰项后的决策层使用Adaboost分类器进行目标识别.实验结果表明,该方法相较传统的K-means聚类、支持向量机、Adaboost算法、BP神经网络、VGG(visual geometry group)算法等在识别精确度方面有显著提高.  相似文献   

13.
以交通标志识别为研究目的,提出一种基于集成卷积神经网络的交通标志识别算法,通过对多个不同结构的卷积神经网络进行集成以提高算法识别率。为了缩短网络训练和测试时间以及提高网络识别率,对单个卷积神经网络的结构进行了优化。使用ReLU(rectified linear unit)激活函数来代替传统的激活函数,使用批量归一化(batch normalization,BN) 方法对卷积层输出数据进行归一化处理,将卷积神经网络的分类器用支持向量机(support vector machine,SVM)代替。使用德国交通标志识别数据库(german traffic sign recognition benchmark,GTSRB)进行训练和测试,实验结果表明,提出的算法识别率为98.29%,单幅交通标志图像测试时间为1.32 ms,对交通标志具有良好的识别性能。  相似文献   

14.
由于微表情具有持续时间短、发生强度弱、动作幅度小等特点,这使微表情识别面临特征提取困难、识别精度低等挑战.针对其面临的数据样本数量少且不平衡、识别精度低等问题,该文提出了基于卷积神经网络的CNNMER(Convolutional Neural Network Micro-Expression Recognition)模...  相似文献   

15.
手势识别是人机交互、智能假肢、医疗康复等领域的研究热点。为了满足手势识别实时性和准确性的需求,本文以成本较小的加速度信号作为数据,在对LeNet-5卷积神经网络进行分析的基础上,提出了一种适合加速度信号的LeNet-A网络。该网络针对基于加速度的手势分类特有的复杂性,增加Dropout层,改变卷积核大小、卷积核数量、激活函数以及分类器。在Ninapro数据集上的实验结果表明,该网络在正常受试者和截肢者的识别率上均表现出很大的优势,平均精度分别为90.37%和79.99%,比目前最佳分类器提升了12%和31%左右。该网络还具有较好的实时性和抗噪性。  相似文献   

16.
近年来,卷积神经网络(CNN)已经成为很多科学领域的研究热点之一.卷积神经网络作为一种深度模型可以直接作用于原始输入,不需要手动设计特征描述子.与传统神经网络相比识别效果有很大的提高.它已经建立了一类强大的模型来处理图像识别,并对其扩展到三维卷积神经网络(3D CNN)来处理视频识别问题.在此基础上,笔者对三维卷积神经网络做了如下改进:用Gabor小波核来初始化卷积操作,以达到模拟人类视觉系统对视觉刺激的响应;在网络训练的过程中加入Dropout技术,随机选择删除部分神经元,以此来提高网络的泛化能力,有效防止过拟合.提出的方法在KTH和UCF-YouTube数据集上进行验证,取得了很好地识别效果.  相似文献   

17.
随着人机交互技术的发展,手势动作作为一种自然、方便以及高效的交互方式受到人们的关注。因而对此从理论和程序执行的角度提出一个针对9种手势识别的卷积神经网络(Convolutional Neural Networks,CNN)模型。首先,从组成CNN的基本单元神经元开始,然后上升到神经网络,最终到反向传播算法。通过调整卷积神经网络中的参数(迭代次数、步长),观察不同参数对网络的均方误差和测试准确度的影响。实验结果表明,该模型和算法可以有效识别9种手势,识别准确率最高可达93. 33%.  相似文献   

18.
场景识别一直是图像处理领域的重要问题之一,对研究移动机器人定位、计算机视觉等方面具有重要意义.然而,室内场景的复杂性与无序性使室内场景识别研究面临许多挑战.传统的手工提取特征无法充分描述室内场景的信息,而卷积神经网络提取的特征能够包含丰富的场景语义和结构信息,且对于平移、比例缩放、倾斜等形式的变形具有高度不变性,因此提出了应用基于卷积神经网络的GoogLeNet网络模型来完成识别任务的方法.该网络模型在深度学习框架Caffe上对MIT_Indoor数据集的识别准确率为59.7%,高于使用传统手工提取特征的算法的准确率,对比结果说明了深度卷积神经网络在室内场景识别问题上的有效性.  相似文献   

19.
针对目前手绘草图识别难度大,识别准确率低且主要以手工提取特征为主,提出一种新的卷积神经网络结构DCSN( Deeper-CNN-Sketch-Net) 进行手绘图像识别。DCSN 模型是根据手绘草图的特点进行设计,如在首层采用了更大的卷积核获取草图的结构信息和更小的步长尽可能多保留特征信息,通过增加网络层数加深网络深度等。为进一步提高识别准确率,针对手绘草图的特点提出了两种新的数据增强方法,小图形缩减策略和尾部移除策略增加数据集的多样性,并利用扩充的数据集训练DCSN 网络。经实验验证,所提出的模型在目前最大的手绘图像数据集上可以取得70. 5% 的识别准确率,超过了目前存在的几种主流的手绘草图识别方法。  相似文献   

20.
针对驾驶员分心驾驶行为检测,设计一种级联卷积神经网络检测框架。检测框架由第一级分心行为预筛选卷积网络和第二级分心行为精确检测卷积网络两个全卷积网络级联构成。预筛选卷积网络是一个轻量级的图像分类网络,负责对原始数据进行快速筛选,其网络层数少、训练速度快,结构特征冗余较少,能够减少后续网络的计算负担;分心行为精确检测卷积网络采用VGG(Visual geometry group)模型特征提取的深度迁移学习检测算法网络,通过迁移学习重新训练分类器和部分卷积层。提出的级联神经网络最终可以实现9种驾驶员分心驾驶行为的准确识别检测。实验结果表明,相比主流单模型检测方法,在保证算法效率的同时准确率均有明显提升,准确率达到93.3%,有效降低了误检率。该方法具有较好的鲁棒性和泛化能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号