共查询到18条相似文献,搜索用时 62 毫秒
1.
人脸面部表情是人机交互和非言语交际的有效方式,对面部表情进行识别并分析,可以获取很多信息,在安全监控、人工智能、军警、心理学等领域有着许多不同的应用。本研究基于深度学习对人脸表情识别进行深入研究,采用Open CV内置算法进行人脸检测,利用卷积神经网络进行面部表情识别,实现对人脸最基本的7种表情包括愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中立分别进行识别。与传统的人脸表情识别方法相比较,卷积神经网络的识别精度高,训练参数少,在面部表情特征表现明显的情况下,对7种表情的识别精度都能超过70%以上。 相似文献
2.
3.
4.
5.
传统验证码识别方法对不同类型的验证码泛化能力和鲁棒性较差。为此,提出一种基于深度卷积神经网络的端对端验证码识别方法。首先,通过并行级联的卷积层构建简易Inception模块,替代Google-net的卷积层,在降低调整参数数量的同时,提高网络对于不同感受野尺度的适应性。同时,采用全局平均池化层替换原全连接层以防止过拟合,提高网络学习效率。其次,在训练过程中,直接利用深度网络的学习能力自动提取和识别验证码图像的字符特征信息,无须对验证码图像进行预分割,可以有效避免因字符分割引起的误差累积问题。通过对谷歌验证码、正方教务系统验证码和京东验证码的测试,结果表明本方法具有更好的泛化能力和鲁棒性,对三类验证码的识别率分别达到96.3%、98.9%和99%,比经典卷积神经网络分别提高3.14%、2.75%和1.14%。 相似文献
6.
针对目前人脸表情识别存在准确率不高、模型复杂和计算量大的问题,文章提出了一种基于八度卷积改进的人脸表情识别模型(OCNN):使用改进的八度卷积进行特征提取,提高对细节特征的提取效果,降低特征图的冗余,在不增加参数的同时减少运算量,以提高特征提取性能;利用DyReLU激活函数来增强模型的学习和表达能力;使用自适应平均池化下采样层代替全连接层,以减少参数;将模型在大规模数据集上进行预训练,并在FER2013、FERPlus、RAF-DB数据集上进行模型性能验证实验。实验结果表明:训练后的模型权重为10.4 MB,在人脸表情识别数据集FER2013、FERPlus和RAF-DB上的准确率分别达到73.53%、89.58%和88.50%;与目前诸模型相比,OCNN模型的准确性高且计算资源消耗低,充分证明了该模型的有效性。 相似文献
7.
针对卷积神经网络特征提取不够充分且识别率低等问题,提出了一种多特征融合卷积神经网络的人脸表情识别方法。首先,为了增加网络的宽度和深度,在网络中引入Inception结构来提取特征的多样性;然后,将提取到的高层次特征与低层次特征进行融合,利用池化层的特征,将融合后的特征送入全连接层,对其特征进行融合处理来增加网络的非线性表达,使网络学习到的特征更加丰富;最后,输出层经过Softmax分类器对表情进行分类,在公开数据集FER2013和CK+上进行实验,并且对实验结果进行分析。实验结果表明:改进后的网络结构在FER2013和CK+数据集的面部表情上,识别率分别提高了0.06%和2.25%。所提方法在人脸表情识别中对卷积神经网络设置和参数配置方面具有参考价值。 相似文献
8.
陈宏彩 《河北省科学院学报》2017,34(2):1-6
车辆颜色是车辆中显著而稳定的特征之一,在智能交通系统中具有重要的作用。针对人工设计的特征提取方法难以有效表达复杂环境下车辆颜色特征的问题,本文在AlexNet网络结构基础上,通过调整网络结构、优化网络参数,形成了基于卷积神经网络的车辆颜色识别网络模型。该方法不需要预处理过程,能够自适应地学习车辆颜色特征表示。对常见的车辆颜色进行训练测试的实验结果表明,本文提出的方法应用到车辆颜色识别问题上具有较好的优势。 相似文献
9.
针对卷积神经网络(CNN)在交通标志识别过程中出现的梯度弥散而引起的识别率低的问题,给出了基于改进CNN结构的交通标志识别方法.实验结果表明:该方法能够有效提高识别精度,防止梯度弥散. 相似文献
10.
针对表情识别研究对网络的训练要求较高,超参数优化较难,训练效果期望低等问题,提出基于迁移学习的深度学习模型,利用几种较新的模型迁移到表情识别的训练中,即搭建CNN网络和基于迁移学习的ResNet18、ResNet50、MobileNetv2网络,通过大量的训练实验对比四种模型。仿真表明,所提出的模型与常用的模型相比,增强了算法性能,优化了表情网络性能,提高了人脸表情识别率和迁移学习效果。 相似文献
11.
现有的面瘫识别方法均基于面部异常或不对称进行判断,但存在面部异常或不对称并不意味着一定是面瘫患者,如:正常人的面部在做某种表情或静止时可能存在不对称;正常人模仿面瘫患者时,也会存在异常和不对称。当重复临床诊断性面部动作时,存在面部异常或不对称的正常人常比患者表现出更大的差异,这是由于正常人相比于面瘫患者具有更健全的面部肌肉运动功能。因此,该文提出了一种基于深度差异特征网络(deep differentiated network,DDN)的面瘫识别方法,该方法对高层特征提取和差异特征计算进行联合优化。首先,利用双数据流卷积神经网络(two-stream CNN)提取疑似患者不同时刻同一动作的面部状态特征;然后,通过单分支卷积网络提取two-stream CNN间的差异特征,并基于差异性特征进行面瘫识别。实验结果表明,DDN能够有效识别疑似患者是否患有面瘫且优于现有方法。 相似文献
12.
传统人脸识别方法手工设计特征过程复杂、识别率较低,对于开集人脸识别通用深度学习分类模型特征判别能力较弱。针对这两方面的不足,提出了一种以分类损失与中心损失相结合作为模型训练监督信号的深度卷积神经网络。首先,利用构建的应用场景数据集优调从公共数据集获得初始化参数的深度人脸识别模型,解决训练数据过小和数据分布差异问题,同时提高模型训练速度;然后,以传统损失函数和新的中心损失作为迁移学习过程中的监督信号,使得类内聚合、类间分散,提高模型输出人脸特征的判别能力;最后,对人脸特征进行主成分分析,进一步去除冗余特征,降低特征复杂度,提高人脸识别准确率。实验结果表明,与传统人脸识别算法相比该算法可以自动进行特征提取,并且相对于通用深度学习分类模型该算法通过度量学习使特征表示更具判别力。在自建测试集和LFW、YouTube Faces标准测试集上都取得了较高的识别率。 相似文献
13.
传统人体行为识别基于人工设计特征方法涉及的环节多,具有时间开销大,算法难以整体调优的缺点。以深度视频为研究对象,构建了3维卷积深度神经网络自动学习人体行为的时空特征,使用Softmax分类器进行人体行为的分类识别。实验结果表明,提出的方法能够有效提取人体行为的潜在特征,不但在MSR-Action3D数据集上能够获得与当前最好方法一致的识别效果,在UTKinect-Action3D数据集也能够获得与基准项目相当的识别效果。本方法的优势是不需要人工提取特征,特征提取和分类识别构成一个端到端的完整闭环系统,方法更加简单。同时,研究方法也验证了深度卷积神经网络模型具有良好的泛化性能,使用MSR-Action3D数据集训练的模型直接应用于UTKinect-Action3D数据集上行为的分类识别,同样获得了良好的识别效果。 相似文献
14.
《天津理工大学学报》2017,(3):12-15
农产品检测技术一直以来都是农业领域研究的热点问题,但以往的识别的错误率都居高不下,该文采用了基于有深度学习机制的卷积神经网络方法来提高识别率.首先对采集到的图像进行预处理得到规范化的二值化图像,再利用Matlab软件进行神经网络的建模,利用其网络自学习能力进行训练与测试,通过仿真验证卷积神经网络对辣椒图像的精确识别率.并与传统BP神经网络进行比较,表明其具有很好的鲁棒性和泛化能力. 相似文献
15.
在复杂交通场景中,公安和交管部门对车型识别的实时性和精度提出了更高要求。针对当前假牌、套牌、无牌车辆处理占用大量警力、检索效率低下、非智能化等一系列问题,提出了一种基于GoogleNet深度卷积神经网络的车型精细识别方法,设计了合理的卷积神经网络滤波器大小和数目,优选了激活函数和车型识别分类器,构建了一个新的卷积神经网络轿车车型精细识别模型框架。实验结果表明,在车型精细识别测试中,所提出模型的识别率达到了97%,较原始GoogleNet模型有较大提升,而且,新模型有效地减少了训练参数的数量,降低了模型的存储空间。车型精细识别技术可应用于智能交通管理领域,具有重要的理论研究价值与实践意义。 相似文献
16.
《西北大学学报(自然科学版)》2021,(1):8-15
CT影像是小肠淋巴瘤诊断的主要方式,近年来深度学习在医学影像领域得到广泛应用,可以极大的减轻医生的工作量。针对小肠淋巴瘤肿瘤形态位置信息差异性大,样本量较少且产生假阳性较多的特点,该文提出了一种基于多任务神经网络模型的小肠淋巴瘤检测模型,该模型使用间质瘤和DeepLesion数据集作预训练,在检测模型当中引入了分类模块,该模块可以用于剔除掉数据中非小肠区域,同时便于引入无boundingbox的正常人小肠区域的数据,用于降低模型的假阳性率。为了增强模型对于小目标的检测效果,对FPN网络的浅层结构进行了改进。在包含正常人和患者的数据集上的测试结果表明,提出模型在保证检测精度的同时,可以有效降低模型的假阳性率。 相似文献
17.
为了进一步提高三维模型的识别精度,提出了一种基于深度卷积神经网络的三维模型识别方法。将点云数据通过占用网格规范化计算转化为二值3D体素矩阵,通过附加正则化项的随机梯度下降算法提取体素矩阵的特征,再通过共享权重的旋转增强对训练集进行数据增广并以此对模型标签进行预测。实验结果表明,该算法在公开数据集ModelNet40及悉尼城市模型数据集上的识别精度均达到85%左右。与基于同类机器学习的三维模型识别算法相比,在相同训练数据集上该方法网络训练时间短,在相同测试数据集上模型识别准确率高,检索速度快。提出的体素占用网格模型的深度卷积神经网络,可以实现三维点云模型数据集及规范化体素模型数据集的识别和分类工作。 相似文献
18.
为了提高人脸年龄分类的精度并且减少年龄分类过程所需的时间,提出了由微调深度卷积神经网络(FDCNN)和概率协同表示分类器(PCRC)构成的深度混合模型对人脸年龄分类的方法.首先,在IMDB数据集上将VGG-Face模型微调,得到一个新的深度卷积神经网络模型;然后,用该模型提取人脸图像的年龄特征,并将其送到基于概率协同表示的分类器进行年龄分类;最后,在FG-NET,MORPH和CACD数据集上对由FDCNN和PCRC构成的混合深度模型进行验证.从验证结果可知:PCRC比支持向量机(SVM)平均分类精度高出4.6%,并且对微调的深度模型倒数第二激活层输出的特征进行分类能取得更高的分类精度;与CA-SVR,DeepRank和DeepRank+相比,FDCNN和PCRC构成的混合深度模型的分类平均绝对误差分别低1.24,0.14和0.06;与由DCNN和SVM构成的分类模型相比,该混合深度模型的年龄分类精度高出3.6%.通过与VGG-Face模型各层运算时间分布对比可知该混合深度模型的分类时间大幅减少,因此混合深度卷积神经网络能很好地进行人脸年龄分类. 相似文献