首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
M Whitman  C P Downes  M Keeler  T Keller  L Cantley 《Nature》1988,332(6165):644-646
The generation of second messengers from the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PtdInsP2) by phosphoinositidase C has been implicated in the mediation of cellular responses to a variety of growth factors and oncogene products. The first step in the production of PtdInsP2 from phosphatidylinositol (PtdIns) is catalysed by PtdIns kinase. A PtdIns kinase activity has been found to associate specifically with several oncogene products, as well as with the platelet-derived growth factor (PDGF) receptor. We have previously identified two biochemically distinct PtdIns kinases in fibroblasts, and have found that only one of these, designated type I, specifically associates with activated tyrosine kinases. We have now characterized the site on the inositol ring phosphorylated by type I PtdIns kinase, and find that this kinase specifically phosphorylates the D-3 ring position to generate a novel phospholipid, phosphatidylinositol-3-phosphate (PtdIns(3)P). In contrast, the main PtdIns kinase in fibroblasts, designated type II, specifically phosphorylates the D-4 position to produce phosphatidylinositol-4-phosphate (PtdIns(4)P), previously considered to be the only form of PtdInsP. We have also tentatively identified PtdIns(3)P as a minor component of total PtdInsP in intact fibroblasts. We propose that type I PtdIns kinase is responsible for the generation of PtdIns(3)P in intact cells, and that this novel phosphoinositide could be important in the transduction of mitogenic and oncogenic signals.  相似文献   

2.
P T Hawkins  T R Jackson  L R Stephens 《Nature》1992,358(6382):157-159
Although the hormone-stimulated synthesis of 3-phosphorylated inositol lipids is known to form an intracellular signalling system, there is no consensus on the crucial receptor-regulated event in this pathway and it is still not clear which of the intermediates represent potential output signals. We show here that the key step in the synthesis of 3-phosphorylated inositol lipids in 3T3 cells stimulated by platelet-derived growth factor is the activation of a phosphatidylinositol(4,5)-bisphosphate (3)-hydroxy (PtdIns(4,5)P2 3-OH) kinase. A similar conclusion has been applied to explain the actions of formyl-Met-Leu-Phe on neutrophils, and it may be that receptors that couple through intrinsic tyrosine kinases or through G proteins stimulate the same step in 3-phosphorylated inositol lipid metabolism. The close parallel between these two mechanisms for the activation of PtdIns(4,5)P2 3-OH kinase and those described for the activation of another key signalling enzyme, phospholipase C (ref. 7), focuses attention on the product of the PtdIns(4,5)P2 3-OH kinase, PtdIns(3,4,5)P3, as a possible new second messenger.  相似文献   

3.
An inositol tetrakisphosphate-containing phospholipid in activated neutrophils   总被引:15,自引:0,他引:15  
Inositol (1,4,5)triphosphate (InsP3) and tetrakisphosphate (InsP4) have been observed in a variety of cell types and have been proposed to play roles in the receptor-mediated rise in intracellular Ca2+ (refs 2, 3). Recently, they have been shown to act synergistically in the activation of a Ca2+-dependent K+ channel in lacrimal acinar cells. InsP3 is the product of phospholipase C (PLC) action on phosphatidylinositol 4,5-bisphosphate (PtdInsP2) whereas InsP4 is believed to arise from phosphorylation of InsP3 by a cytosolic kinase. Although sought as a source for InsP4, PtdInsP3 has not been identified in any specific cell type. There were early reports of InsP4-containing phospholipids in crude extract from bovine brain, but this finding was later withdrawn. Recently, however, a membrane-bound enzyme (Type 1 PI kinase) which adds phosphate onto the 3 position of inositol phospholipids has been identified and the phosphatidylinositol-3-phosphate (PtdIns(3)P) product characterized. This suggests that several forms of phosphoinositides may exist and could be precursors for some of the variety of soluble inositol phosphate products which have been reported in recent years. Here we report the appearance of another novel phosphoinositide containing four phosphates, phosphatidylinositol trisphosphate (PtdInsP3) which we find only in activated but not in unstimulated neutrophils from human donors.  相似文献   

4.
5.
L R Stephens  K T Hughes  R F Irvine 《Nature》1991,351(6321):33-39
Neutrophils activated by the formyl peptide f-Met-Leu-Phe transiently accumulate a small subset of highly polar inositol lipids. A similar family of lipids also appear in many other cells in response to a range of growth factors and activated oncogenes, and are presumed to be the direct or indirect products of 3-phosphatidylinositol kinase. The structures of these lipids are shown to be phosphatidylinositol 3-phosphate, phosphatidylinositol-(3,4)bisphosphate and phosphatidylinositol-(3,4,5)trisphosphate, and we present evidence that in intact neutrophils a phosphatidyl-inositol-(4,5)bisphosphate-3-kinase seems to be the focal point through which agonists stimulate the formation of 3-phosphorylated inositol lipids.  相似文献   

6.
7.
R F Irvine  A J Letcher  J P Heslop  M J Berridge 《Nature》1986,320(6063):631-634
Recent advances in our understanding of the role of inositides in cell signalling have led to the central hypothesis that a receptor-stimulated phosphodiesteratic hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) results in the formation of two second messengers, diacylglycerol and inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). The existence of another pathway of inositide metabolism was first suggested by the discovery that a novel inositol trisphosphate, Ins(1,3,4)P3, is formed in stimulated tissues; the metabolic kinetics of Ins(1,3,4)P3 are entirely different from those of Ins(1,4,5)P3 (refs 6, 7). The probable route of formation of Ins(1,3,4)P3 was recently shown to be via a 5-dephosphorylation of inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), a compound which is rapidly formed on muscarinic stimulation of brain slices, and which can be readily converted to Ins(1,3,4)P3 by a 5-phosphatase in red blood cell membranes. However, the source of Ins(1,3,4,5)P4 is unclear, and an attempt to detect a possible parent lipid, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), was unsuccessful. The recent discovery that the higher phosphorylated forms of inositol (InsP5 and InsP6) also exist in animal cells suggested that inositol phosphate kinases might not be confined to plant and avian tissues, and here we show that a variety of animal tissues contain an active and specific Ins(1,4,5)P3 3-kinase. We therefore suggest that an inositol tris/tetrakisphosphate pathway exists as an alternative route to the dephosphorylation of Ins(1,4,5)P3. The function of this novel pathway is unknown.  相似文献   

8.
Altered subcellular distribution and activity of protein kinase C (PKC) is associated with transmembrane signalling in a variety of systems in which receptor occupancy leads to increased hydrolysis of polyphosphoinositides. Here we report evidence that in B lymphocytes, cyclic-cAMP-generating signal transduction pathways can activate translocation of PKC from the cytosol to the nucleus. Elevated cAMP levels and translocation of PKC to the nucleus are induced by antibodies against Ia antigens in normal B lymphocytes. Further, cAMP analogues mediate the translocation of PKC to the nucleus of these cells. These findings suggest that in physiological situations, ligation of B-lymphocyte Ia molecules by helper T cells leads to increased cAMP production which in turn causes PKC translocation to the nucleus. In view of recent observations that antibodies against Ia antigens induce differentiation of B cells, we conclude that nuclear PKC may function in the regulation of gene expression.  相似文献   

9.
A H Drummond 《Nature》1985,315(6022):752-755
It is now established that a key step in the action of calcium-mobilizing agonists is stimulation of the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) to 1,2-diacylglycerol and inositol 1,4,5-trisphosphate (InsP3). The latter substance acts as a second messenger, controlling the release of calcium from intracellular stores (see ref. 3 for review). The bifurcating nature of the signalling system is exemplified by the fact that the other product of PtdIns(4,5)P2 hydrolysis, 1,2-diacylglycerol, can alter cellular function by activating protein kinase C, the cellular target for several tumour-promoting agents such as the phorbol esters. In various tissues, including GH3 pituitary tumour cells, a synergistic interaction between calcium ions and protein kinase C underlies agonist-induced changes in cell activity. The data presented here suggest that when GH3 cells are stimulated by thyrotropin-releasing hormone (TRH), an agonist inducing PtdIns(4,5)P2 hydrolysis, the two limbs of the inositol lipid signalling system interact to control free cytosolic calcium levels [( Ca2+]i). At low levels of TRH receptor occupancy, [Ca2+]i increases rapidly, then declines relatively slowly. As receptor occupancy increases, the calcium signal becomes more short-lived due to the appearance of a second, inhibitory, component. This latter component, which is enhanced when [Ca2+]i is elevated by high potassium depolarization, is mimicked by active phorbol esters and by bacterial phospholipase C. It seems likely that protein kinase C subserves a negative feedback role in agonist-induced calcium mobilization.  相似文献   

10.
M Vallejo  T Jackson  S Lightman  M R Hanley 《Nature》1987,330(6149):656-658
Although inositol 1,3,4,5,6-pentakisphosphate (InsP5) and hexakisphosphate (InsP6) have been recognized for some time as naturally-occurring metabolites of inositol, their occurrence in mammalian cell types, including one of neural origin, has only recently been documented. This is of interest because of the recognized second messenger role of inositol 1,4,5-trisphosphate (InsP3) in intracellular signalling; coupling surface stimuli to cytoplasmic calcium discharge. The metabolism, existence in normal mature tissues, and possible functional roles of these inositol polyphosphates are unknown. Here we report evidence that InsP5 and InsP6 are synthesized in intact brain after labelling with [3H]inositol in vivo. We also show that local infusion of InsP5 and InsP6 into a discrete brain stem nucleus implicated in cardiovascular regulation, results in dose-dependent changes in heart rate and blood pressure.  相似文献   

11.
M J Berridge  R F Irvine 《Nature》1984,312(5992):315-321
There has recently been rapid progress in understanding receptors that generate intracellular signals from inositol lipids. One of these lipids, phosphatidylinositol 4,5-bisphosphate, is hydrolysed to diacylglycerol and inositol trisphosphate as part of a signal transduction mechanism for controlling a variety of cellular processes including secretion, metabolism, phototransduction and cell proliferation. Diacylglycerol operates within the plane of the membrane to activate protein kinase C, whereas inositol trisphosphate is released into the cytoplasm to function as a second messenger for mobilizing intracellular calcium.  相似文献   

12.
Strand A  Asami T  Alonso J  Ecker JR  Chory J 《Nature》2003,421(6918):79-83
Plant cells coordinately regulate the expression of nuclear and plastid genes that encode components of the photosynthetic apparatus. Nuclear genes that regulate chloroplast development and chloroplast gene expression provide part of this coordinate control. There is evidence that information also flows in the opposite direction, from chloroplasts to the nucleus. Until now, at least three different signalling pathways have been identified that originate in the plastid and control nuclear gene expression but the molecular nature of these signals has remained unknown. Here we show that the tetrapyrrole intermediate Mg-protoporphyrin (Mg-ProtoIX) acts as a signalling molecule in one of the signalling pathways between the chloroplast and nucleus. Accumulation of Mg-ProtoIX is both necessary and sufficient to regulate the expression of many nuclear genes encoding chloroplastic proteins associated with photosynthesis.  相似文献   

13.
14.
K Fukami  K Furuhashi  M Inagaki  T Endo  S Hatano  T Takenawa 《Nature》1992,359(6391):150-152
Inositol phospholipid turnover is enhanced during mitogenic stimulation of cells by growth factors and the breakdown of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) may be important in triggering cell proliferation. PtdInsP2 also binds actin-binding proteins to regulate their activity, but it is not yet understood how this control is achieved. The protein alpha-actinin from striated muscle contains large amounts of endogenous PtdInsP2, whereas that from smooth muscle has only a little but will bind exogenously added PtdInsP2. In vitro alpha-actinin binds to F-actin and will crosslink actin filaments, increasing the viscosity of F-actin solutions. We report here that alpha-actinin from striated muscle is an endogenous PtdInsP2-bound protein and that the specific interaction between alpha-actinin and PtdInsP2 regulates the F-actin-gelating activity of alpha-actinin. Although the F-actin-gelating activity of alpha-actinin from smooth muscle is much reduced compared with that from striated muscle, exogenous PtdInsP2 can enhance the activity of smooth muscle alpha-actinin to the level seen in striated muscles. These results show that PtdInsP2 is present in striated muscle alpha-actinin and that it is necessary for alpha-actinin to realize its maximum gelating activity.  相似文献   

15.
W L Farrar  T P Thomas  W B Anderson 《Nature》1985,315(6016):235-237
Interleukin-3 (IL-3) is a member of a family of growth and differentiation peptides, collectively referred to as colony-stimulating factors, which regulate haematopoiesis. IL-3 has been highly purified from medium conditioned by WEHI-3B cells, and recently the molecular cloning of complementary DNA for murine IL-3 has been reported. IL-3 seems to stimulate a wide range of colony-forming cells derived from murine bone marrow and has consequently been studied under a variety of names, including burst-promoting activity, mast cell growth factor, P-cell stimulating factor and multi-colony-stimulating factor. Here we present evidence that IL-3-receptor interaction stimulates the rapid and transient redistribution of protein kinase C (PK-C) from cytosol to plasma membrane in FDC-P1 cells. Phorbol myristate acetate (PMA) is shown to have a similar effect in these IL-3-dependent FDC-P1 cells. Our data suggest that IL-3 and phorbol esters share a common feature of transmembrane signalling crucial for growth and differentiation.  相似文献   

16.
In many cell types, receptor activation of phosphoinositidase C results in an initial release of intracellular Ca2+ stores followed by sustained Ca2+ entry across the plasma membrane. Inositol 1,4,5-trisphosphate is the mediator of the initial Ca2+ release, although its role in the mechanism underlying Ca2+ entry remains controversial. We have now used two techniques to introduce inositol phosphates into mouse lacrimal acinar cells and measure their effects on Ca2+ entry: microinjection into cells loaded with Fura-2, a fluorescent dye which allows the measurement of intracellular free calcium concentration by microspectrofluorimetry, and perfusion of patch clamp pipettes in the whole-cell configuration while monitoring the activity of Ca(2+)-activated K+ channels as an indicator of intracellular Ca2+. We report here that inositol 1,4,5-trisphosphate serves as a signal that is both necessary and sufficient for receptor activation of Ca2+ entry across the plasma membrane in these cells.  相似文献   

17.
Auxin induces rapid changes in phosphatidylinositol metabolites   总被引:26,自引:0,他引:26  
C Ettlinger  L Lehle 《Nature》1988,331(6152):176-178
  相似文献   

18.
19.
Calcium-dependent phosphorylation of histone H3 in butyrate-treated HeLa cells   总被引:12,自引:0,他引:12  
J P Whitlock  R Augustine  H Schulman 《Nature》1980,287(5777):74-76
Ca2+ is prominant in the control of cell proliferation and function. However, the biochemical mechanism(s) mediating its effects on nuclear events is unknown. We report here that Ca2+, at physiological concentrations, stimulates the phosphorylation of histone H3 by an endogenous protein kinase in HeLa cell nuclei. Also, pretreatment of cells with Na butyrate, which increases histone acetylation, selectively increases the susceptability of histone H3 to phosphorylation by the protein kinase. Our results reveal a potential link between histone H3 acetylation and phosphorylation, modifications which are thought to have important effects on chromatin structure and function and suggest a possible mechanism whereby stimuli at the cell surface (such as hormones, mitogens and drugs) may influence biochemical events at the nuclear level; changes in the intracellular Ca2+ concentration may influence the phosphorylation of chromosomal proteins, mediated by Ca2+ -dependent kinases in th nucleus.  相似文献   

20.
磷脂酰肌醇转移蛋白质家族的研究进展   总被引:1,自引:0,他引:1  
脂类的单体转移是由一娄蛋白质来执行的,这组蛋白质把脂类结合到疏水腔,从而使脂娄避开了含水环境、其中的这样一组蛋白质是磷脂酰肌醇转移蛋白质家族(PITPs),能结合磷脂酰肌醇和磷脂酰胆碱,把它们从一个膜区转移到另一膜区.PITPs是在单细胞和多细胞组织中发现的,但在细菌中没有发现.在鼠和人类中,人们发现负责脂类转移的PITP结构域有五个蛋白,按照序列分成两类:类型I PITPs由两个家族成员α,β构成,它们是小蛋白35kDa,有一个PITP结构域,可以普遍表达;类型Ⅱ A PITPs(RdgBαI和Ⅱ)是很大的蛋白质,有另外的结构域,把蛋白质靶向膜,仅能结合脂类,但不能介导转移.类型Ⅱ B PITP(RdgBβ)与类型I在大小(38kDA)上相似,也是普遍表达的.类型Ⅲ PITPs,以secl4P家族为代表,是在酵母和植物中发现的,但是在序列和结构上与类型I和类型Ⅱ PITPs相似.讨论了PITP蛋白是被动转运蛋白辽是调节蛋白,在行使肌醇酯类和膜转换的专门的生物功能时,能否把转运和结合性质偶连起来.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号