首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
郭夕华 《太原科技》2012,(1):100-104
简要介绍了CRTSⅡ型板式无砟轨道的基本结构、施工工艺、总结施工经验,为以后同类轨道结构施工提供借鉴。  相似文献   

2.
姜辉 《科技资讯》2012,(1):61-62
探讨了两布一膜滑动层在高速铁路CRTS Ⅱ型板式无砟轨道施工中的应用,并结合石武高速铁路工程,总结出一套技术先进,操作简单的施工工艺。  相似文献   

3.
为了分析京沪高速铁路CRTSⅡ型板式无砟轨道结构的动力响应,通过建立无砟轨道结构-下部基础结构动力有限元分析模型,得到了结构前10阶模态和不同列车速度下无砟轨道结构的动力特性.分析结果表明:桥梁上CRTSⅡ型板式无砟轨道结构的自振频率都比规范的限值大,说明桥梁有足够的刚度保证列车行驶的安全性和舒适性;桥梁上板式无砟轨道结构的前10阶振型中大部分振型表现为横向扭转,桥梁结构横向刚度相对较小,在实际的高速铁路桥梁结构中应注意桥梁的横向稳定性;无砟轨道结构各个构件的竖向位移、竖向加速度、板底水平拉应力及CA砂浆层竖向压应力均随列车速度的增大而逐渐增大;线下基础结构顶面竖向压应力存在转折变化点.  相似文献   

4.
基于轨道板与底座板分离,建立了考虑轨道板损伤的CTRSⅡ型板式无砟轨道与桥梁相互作用力学模型,并采用有限单元法求解,分析了轨道板全断面开裂和更换轨道板对大跨度连续梁桥上钢轨、底座板、剪力齿槽、桥梁墩台及砂浆受力的影响.结果表明:轨道板全断面开裂后钢轨、底座板的纵向力增加,最大增幅分别为22.55和131.48 k N,轨道板纵向力则降低,剪力齿槽、桥梁墩台的纵向力变化很小;轨道板全断面开裂对钢轨和底座板纵向受力影响范围分别为32~50 m和24~36 m;桥梁伸缩或列车制动作用下全断面开裂位置的砂浆阻力接近其极限阻力,为避免砂浆开裂应及时更换轨道板;更换轨道板对底座板纵向受力影响最大,建议轨道板进行更换作业的板温变化幅度控制在15℃以内.  相似文献   

5.
齐文泉 《科技资讯》2011,(10):131-131,133
目前,国内新建高速铁路的无砟轨道部分采用了采用CRTSⅡ轨道板体系,其中底座板作为Ⅱ型板桥上无砟轨道的重要构成部分,由于底座板是新引进的东西,已有施工经验少,在国内还无成熟的施工工艺可以学习。我单位在京沪高速铁路四标段濉河特大桥底座板施工中,经过不断尝试,逐渐总结出了一套桥上无砟轨道底座板的施工经验,归纳后形成本工法。  相似文献   

6.
以石武客运专线SWZQ-5标CRTSⅡ型板式无砟轨道先导段为例,重点介绍了先导段底座板张拉施工的工艺及要点,探讨了最优温度及时间的确定,最佳张拉顺序的选择,以期为大面积展开无砟轨道底座板施工提供技术保障。  相似文献   

7.
高峰 《中国西部科技》2010,9(33):33-35,78
根据石武客运专线CRTSⅡ型板式无砟轨道道下揭板试验实例,介绍了CA砂浆搅拌、灌注和轨道板粗铺、精调等各项施工工艺及现场揭板检验平坡和最大曲线超高CA砂浆垫层的充填饱满度、匀质性和密实性,为类似工程提供参考。  相似文献   

8.
利用三跨CRTSⅡ型板式无砟轨道-简支梁桥结构体系1?4缩尺模型,开展单梁和梁轨协同作用下的静载试验,并对比分析其特性及轨道结构对结构体系刚度的影响规律.根据轨道结构与简支梁桥界面滑移模式,以能量变分原理为基础,建立无砟轨道-简支梁桥结构体系的控制微分方程,并利用最小势能原理推导结构体系挠度与滑移的理论解.研究结果表明...  相似文献   

9.
路基上CRTSⅢ型板式无砟轨道结构设计方案分析   总被引:2,自引:0,他引:2  
路基上CRTS(China railway track system)Ⅲ型板式无砟轨道结构存在单元式和纵连式两种设计方案.通过建立纵横垂向空间耦合有限元计算模型,对两种设计方案在温度荷载、列车荷载、混凝土收缩及基础沉降变形作用下的力学特性进行了计算与对比分析.计算结果表明:对于严寒地区,基于温度荷载的影响较大以及轨道的可维修性,建议采用单元式结构.  相似文献   

10.
魏军 《科技资讯》2011,(33):30-31
轨道板模具的设计直接影响到高速铁路建设的平顺性与稳定性。结合CRTSⅡ型无砟轨道板的施工,介绍了轨道板模具的组成、有限元模型的建立与分析。提出安装过程中的反变形控制措施。实践证明该方法可有效减少轨道板承轨台打磨量。  相似文献   

11.
我国高速铁路大部分以桥代路,桥梁比例占到总建设里程的80~90%,甚至更高,为满足高速及高平顺性,CRTSⅡ型无砟轨道技术开始在我国高速铁路桥梁上使用,并有望在未来广泛使用,但目前还没有成熟的施工技术。本文详细阐述了CRTSⅡ型无砟轨道底座板的特点、桥梁底座板段落划分原则及技术标准及CRTSⅡ型无砟轨道底座板施工方法,可供同类工程施工参考。  相似文献   

12.
对CRTSⅠ型板式无砟轨道测量控制网建立、轨道板精调和CA砂浆灌注等工艺进行了研究,运用GRP精密控制网和高精度速调标架,保证了轨道板几何位置的精准和良好的平顺性;在CA砂浆中加入P乳剂和有效的养护措施,保证了低温环境下砂浆灌注的质量。  相似文献   

13.
为研究地震作用下桥上CRTSⅢ型板式无砟轨道系统的动力响应,以11×32 m简支梁桥为例,基于有限元法和梁-轨-板相互作用原理,建立了桥上CRTSⅢ型板式无砟轨道无缝线路精细化空间耦合模型,分析了不同地震波及地震动强度对系统受力变形的影响.研究结果表明:与El-Centro波相比,天津宁河波对系统动力响应有显著的增强效应,钢轨应力曲线均关于跨中呈反对称分布,最大拉压应力为206.5 MPa;各层间构件受力变形曲线均关于桥梁纵向呈轴对称分布,钢轨位移线形平滑,在中跨桥右侧1/3处达到最大,为100.6 mm;轨道板、自密实混凝土层、底座板位移随桥跨数的增加呈阶梯增减变化,最大值出现于第6跨桥,轨板相对位移在最右侧梁缝处达到最大,各结构的纵向力较小;随着地震动强度的提高,系统受力变形显著增加;与设计地震相比,罕遇地震下轨板相对位移最大值增加了146.9%,可达85.5 mm,极易导致轨下胶垫窜出引发扣件失效;左侧桥台与相邻固定支座墩顶最大位移差值显著,为96.6 mm,增加了落梁风险;对于地震区桥上无缝线路,需加强对薄弱位置处轨板相对位移以及相邻墩/台顶位移的关注.  相似文献   

14.
祁永杰 《甘肃科技》2013,29(2):99-102
CRTSⅡ型板式无砟轨道技术,其轨道结构主要由轨道板、乳化沥青砂浆充填层、混凝土底座及钢轨扣件等构成。主要通过石武客专无砟轨道工艺性试验,模拟无砟轨道施工过程中的各个工序、质量控制要点、人员配置、乳化沥青砂浆施工配合比等情况,为以后正式施工打好坚实的基础。  相似文献   

15.
16.
开展了行车条件下高速铁路CRTSⅡ型板式无砟轨道-桥梁系统的动力响应现场测试,测试CRH380A-001型列车以285~350km/h时速通过时无砟轨道-32m标准预应力混凝土简支梁的动力响应.通过现场采集与数据分析,得到了钢轨、轨道板、底座板、桥面板的竖横向加速度幅值,桥墩顶纵横向绝对位移.结果表明:结构各层加速度在列车时速达到295km/h左右时,急剧增大,之后顺速降低,出现陡波峰;车致振动加速度响应自钢轨-轨道板-底座板-桥面板,自上至下呈明显的递减趋势,振动衰减较为明显.此外,基于实测的梁体自振频率与阻尼比,分析了梁体动挠度的简化计算方法,计算结果与实测梁体动挠度较接近.实验结果可为改进数值分析模型、验证计算结果提供依据.  相似文献   

17.
建立连续梁桥上CRTSⅡ型板式无砟轨道纵向力计算模型和求解方法,分析滑动层摩擦系数、底座板伸缩刚度和扣件纵向阻力对大跨度连续梁桥上伸缩附加力的影响.结果表明:降低滑动层摩擦系数和扣件纵向阻力可以减小钢轨和底座板伸缩附加力,增加底座板伸缩刚度可以减小钢轨和桥梁墩台伸缩附加力.  相似文献   

18.
基于列车-轨道耦合动力学理论,建立列车-板式无砟轨道-路基三维有限元耦合动力学模型,并对建立的三维有限元耦合动力学模型进行相应的程序验证。运用建立的耦合动力学模型,对列车在路基上板式无砟轨道线路上高速行驶时,在线路平顺工况和各种不平顺工况下,无砟轨道各部件动力特性和相应动力系数进行理论研究。研究结果表明:在线路平顺状态下,车辆轮载及无砟轨道各部件动力响应很小,动力系数不超过1.2;在线路中长波随机不平顺激扰下,轮载动力系数接近2,无砟轨道各部件动力系数在1.70~2.06之间,轮载动力系数和无砟轨道各部件动力系数相差不大;短波不平顺对轮载动力系数有很大的影响,由于短波不平顺引起的振动在无砟轨道中衰减很快,其对无砟轨道上部部件动力系数的影响较大,而对无砟轨道下部部件动力系数的影响很小。  相似文献   

19.
为简化大跨连续梁桥上CRTSⅢ型板式无砟轨道无缝线路纵向力计算模型,基于原有计算模型、连续梁桥受力特点及梁-板-轨相互作用原理提出简化的等截面计算模型,并将新的模型与原变截面模型分别在伸缩力、制动力及挠曲力工况下的计算结果进行对比分析.结果表明:简化模型与原模型在伸缩力和制动力工况下各结构纵向力与位移变化趋势基本一致,计算结果误差均不到1%,满足工程需要;简化模型与原模型挠曲力工况下计算结果相差很大,挠曲力工况下须根据连续梁实际截面参数进行建模计算;各轨道及桥梁结构挠曲受力与变形均很小且一般不作为设计检算指标.提出的简化模型其建模速度和计算效率可提高20%~40%.  相似文献   

20.
在大跨度连续梁上铺设CRTS Ⅰ型板式无砟轨道结构,并且考虑高速车辆的动力作用之后,其梁轨相互作用机理更加复杂.基于ABAQUS软件,建立高速铁路长大桥梁CRTSⅠ型板式无砟轨道无缝线路纵横垂向空间耦合动力学模型,可以对高速条件下高速车辆、无缝线路钢轨、无砟轨道和长大桥梁各细部结构的动力学特性进行研究.经计算和检算可知,在铺设CRTS Ⅰ型板式无砟轨道无缝线路的(80+ 128+ 80)m连续梁上运行时速350 km的高速车辆,其各项动力学计算结果均满足动力学检算标准.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号