首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
设系统X=f(x)定义在G(?)R~ ×R~n上,t∈R~ ,x∈R~n,且方程满足唯一性。方程的任一解x(t)→0当t→ ∞时。那么系统的零解(设x(t)≡0是系统的解。)是否为全局稳定的?当n=1时,问题的答案是显然的。当n≠1时尚无一般结论。 本文利用文[1]的思想方法证明了下面的定理:  相似文献   

2.
Γ(x):=integral fromn=0 to ∞(e-ttx-1dt),x>0为gamma函数。设f(x):=logΓ(x)+logΓ(1-x),x∈Q(0,12]。证明如果存在有理数y0∈Q(0,12],使得f(y0)=logΓ(y0)+logΓ(1-y0)∈Q,则集合{eαπ|α∈珚Q}中恰好有一个代数数,即e-f(y0)π,且e-f(y0)π=sinπy0。  相似文献   

3.
研究一类在非线性光学中提出的Schr(o)dinger方程的Cauchy问题iut △u |u| p-1 u=0;u(x,0)=u0 (x),x∈Rn,t≥0的整体解存在性问题,由于此时间题已不再具有正定能量.通过利用Galerkin结合位势井的方法证明了在满足条件1 < p < ∞,n=1,2;1< p ≤n 2/n-2,n≥3,u0(x)∈H1(Rn),0相似文献   

4.
设R是一个素环,L是R的一个非零右理想,D是R的一个非零导子,a∈R.假设aD(x)n=0对于所有的x∈L成立,这里n是一个固定整数,那么aL=0或D=ad(p),对于某个p∈Q,使得pL=0.  相似文献   

5.
[1]中有如下习题:证明若函数级数在开区间(a,b)一致收敛于和函数S(X),且,函数un(x)在闭区间[a,b]连续,则和函数S(x)在闭区间连续.[2]中提供了此问题的解答.在其证明中利用了先决条件“S(x)在a,b处存在”.但是实际上我们可以不附加此先决条件,即在较弱的条件下证明此命题.证首先我们证明:在已知条件下s(a)与s(b)存在.如果发散,可能有两种情况:其前n项和有界或无界.但不论哪种情况,总有k>Q使得因为在(a,b)上一致收敛,所以对于k/2>0,有N1>0,使得任意n1,n2>N1,有,对成立.对于N1.取n1’.n2’…  相似文献   

6.
一类半线性椭圆方程组: {△u(x)+f1(u(x))g1(v(x))=0 x∈Ω △v(x)+f2(u(x))g2(v(x))=0 x∈Ω u(x)+v(x)=0 x∈aΩ 其中,Ω R^N是关于0的星形区域f1、f2、g1、g2:R→R+为非负函数.在一定条件下,它的非平凡解是不存在的.  相似文献   

7.
设R为质环,d为R的非零微分算子,对所有的x∈R,有n=n(x)≥1,使d(x″)=0成立。文[3]中证明了:在上述条件下,当R无非零诣零理想时,R必为特征p>0的无限交换整环,且p|n(x)(若d(x)≠0)。文[4]证明了:在上述条件下,当{n(x)}x∈R有界时,类似的结论成立。在此先给出: 定义:映射δ:R→R称为R的σ—半微分算子,若σ为R的自同构,且对所有的x,y∈R,恒有:  相似文献   

8.
一个环R称为quasi-normal环,是指对每个e∈E(R),a∈N(R),ea=0,总有eRae=0.证明了:①R是quasi-normal环当且仅当对每个e∈E(R),eR(1-e)Re=0;②设R是quasi-normal环,σ是环R的环满同态且保持幂等元不变,则R[x,σ]/(x2)是quasi-normal环,并且得到一些相关推论.  相似文献   

9.
设p是奇素数,运用初等方法证明:如果(p,x,a,m,n)是方程x2=22a+2p2m-2a+2pm+n+1的一组正整数解,则必有n≥2m,且x=2a+1f+λ=2p2mg-λ,其中,λ=(-1)(x-1)/2,f和g是适合2a-pn-m=fg以及p2mg-2af=λ的正整数;而且该方程仅有解(p,x,a,m,n)=(5,49,3,1,2)满足g=1。  相似文献   

10.
一类非线性二阶常微分方程m+1点边值问题的可解性   总被引:1,自引:3,他引:1  
设e∈C[0,1].设η∈[0,1],α∈R,ξi∈[0,1],ai∈R(i=1,2,…,m-2)为给定常数,满足α≠1,0<ξ1<ξ2<…<ξm-2<1,所有ai具有相同符号且∑m-2i=1ai≠1.在f∶[0,1]×R2→R满足Carathéodory条件和一些符号条件的前提下考虑非线性二阶常微分方程m 1点边值问题x″=f(t,x(t),x′(t)) e(t),0相似文献   

11.
考虑半线性椭圆方程组{△u+f(v)=0,x∈Ω △v+g(w)=0,x∈Ω △w+h(u)=0,x∈Ω u=v=w=0,x∈δΩ 的Pohozaev等式,其中Ω∪→R^n是有界区域,u,v,w∈C^2(Ω)∩↓C^1(Ω),f、g、h:R→R是连续函数。  相似文献   

12.
设φ(x)为定义在实轴R上的保向同胚映照,本文证明:如果essinfφ'(x)〉0,esssup φ'(x)〈+∞且满足Dini条件∫0^+∞∣φ'(x+t)-φ'(x-t)∣/tdt+∞,对于任意的x∈R,则φ(x)可以被延拓成上半平面到自身上的调和拟共形映照.  相似文献   

13.
设R为结合环。文献[3]证明了:设R是具有正则元的半质环,如果R满足条件:对于任意的x,y∈R,都存在一个与x,y有关的整数n=n(x,y)≥1,使得(xy)n+k=xn+kyn+k,k=0,1,2,则R为交换环。给出上述结果的一个简短证明,并将其推广,证明了定理:设R是具有正则元的半质环,如果R满足条件:对于任意的x,y∈R,都存在一个与x,y有关的整数n=n(x,y)≥1,使得(xy)n+k=yn+kxn+k,k=0,1,2,则R为交换环。  相似文献   

14.
图G称为泛连通的,如果对于G中距离为d(x,y)的任意两点x和y,G中都存在每个长为l的x:y路(这里d(x,y)≤l≤︱V(G)︱-1);图G称为偶泛连通的,如果对于G中距离为d(x,y)的任意两点x和y,G中都存在每个长为l的x: y路(这里d(x,y)≤l≤︱V(G)︱-1),且l和d(x,y)有相同的奇偶性.本文用归纳法证明了以下结论:当n≥2时,在完全二部图K n,n中,若故障边数︱Fe︱≤n-2,则K n,n-Fe是偶泛连通的,并且︱Fe︱的上界n-2是最优的;完全k(k≥3)部图K n,n,…,n是泛连通的.  相似文献   

15.
研究当n≥4一类弱阻尼非线性四阶波动方程的初边值问题utt+Δ2u+αut=f(u),α0,x∈Ω,t0,u(x,0)=u0(x),ut(x,0)=u1(x),u|Ω=0,Δu|Ω=0,其中Ω∈Rn为有界域.利用Galerkin方法证明了如果f′(s)≤C0且存在常数A、B使得|f′(s)|≤A|s|p+B,其中0p≤n 4-4,n4;0p∞,n=4,u0∈H02(Ω)∩H01(Ω),u1∈L2(Ω),则问题存在整体弱解u(x,t)∈L∞(0,T;H02(Ω)∩H10(Ω)).并且讨论了问题整体弱解的唯一性及渐进性,拓宽了文献[1,2,5]所研究的问题,得到了较好的结果.  相似文献   

16.
本文研究了一类Rn(n≥3)上带奇异性的非线性双调和方程Δ2u=f(|x|,u,|▽u|) u-β,(β〉0,x∈Rn,n≥3),给出了该类方程有正的整体解的充分必要条件,以及解的性质.  相似文献   

17.
近年来,对于源于多目标决策过程动态规划的泛函方程在某种特定条件下解的存在性,唯一性以及迭代逼近的研究越来越广泛.然而,通过对这类问题的研究,不难发现泛函方程的类型不必局限于它的基本形式.因此,结合之前对于基本形式下泛函方程的研究成果,本文利用不动点定理以及一种新的组合性思维,研究了一类更加复杂的泛函方程,即f(x)=λsup∈D{u(x,y)+f(T(x,y))}+(1-λ)infy∈D{v(x,y)+f)T,(x,y))},x∈S,其中λ∈[0,1]的解的性质,这类泛函方程的引入扩大了研究问题的范围,同时可以用它来解决更多的实际问题.  相似文献   

18.
设A是体K上的n级可逆矩阵,A≠cIn,c是K的中心元,若有bi,ci∈K,使得det A= ,其中det是Diendonn'e行列式符号,且对于x∈K\{0}=K*时,x∈K*/D(K*),D(K*)是 i=lK*的换位子群,则存在K上的n级方阵B与C,使A=BC,其中B相似于以b1,…,bn为对角元的K上某个下三角阵,C相似于以C1,…,Cn-1,CnP为对角元的K上某个上三角方阵,ρ∈D(K*),这个事实推广了域上相应的结论.  相似文献   

19.
对粗糙核分数次极大算子与BMO函数生成的m阶(m∈Z+)交换子MmΩ,α,bMmΩ,α,bf(x)=supr>01rn-α∫|x-y|1,b∈BMO(Rn),且m∈Z+,如果p,q,s,ω满足下述条件之一,那么存在与f无关的常数C,使得‖MmΩ,α,bf‖q,ωq≤C‖f‖p,wp(i)s>q,ω-s’∈A(q’s’,p’s’);(ii)αn+1s<1p<1s’,存在1相似文献   

20.
设μ为Rd上的Radon测度,满足μ(B(x,r))≤c0rn,其中c00,n∈(0,d],ω∈Ap(μ),b∈RBMO(μ),f∈Ll1oc(μ)且‖μ‖∞令1p∞,则∫Rd|[b,Iα]f|pω(x)dμ(x)≤C∫Rd|f(x)|pω(x)dμ(x).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号