首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
甲醛在聚苯胺修饰分散铂电极上的电催化氧化   总被引:4,自引:0,他引:4  
用循环伏安法和恒电位法在铂电极上分别制备了分散铂电极、聚苯胺修饰电极及聚苯胺修饰分散铂电极,并用循环伏安法研究了制备电极在0.5mol/L H2SO4溶液中的电化学行为以及对甲醛氧化的催化行为,分散铂电极对甲醛氧化的最大电流是6.48mA,是基体电极(0.075mA)的86.4倍,聚苯胺修饰分散铂电极对甲醛氧化的最大电流(15.12mA)是基体电极的201.6倍,分散铂电极的2.3倍,分散铂对甲醛氧化的催化作用不仅仅是铂面积增大的结果,还存在纳米效应,聚苯胺修饰铂电极对甲醛氧化的催化除存在铂进一步分散使面积进一步增大的因素外,还存在铂与聚苯胺的协同作用。  相似文献   

2.
采用循环伏安法研究PAN(Pt)电极在不同pH值、不同浓度的甲酸溶液中对甲酸的电催化氧化性能 .并考察了PAN(Pt)对甲酸、甲醛和甲醇的电催化氧化行为 ,发现PAN(Pt)电极对三者均有较高的电催化氧化活性 .它们的CV正向扫描峰值电位分别为 0 .2 8V、0 .75V、0 .70V ,峰值电流密度分别为 330 .4、878.6、735.7mA·cm- 2 .PAN(Pt)电极对甲酸电催化氧化体系的 pH值控制在 0 .7左右为宜 .在 0 .0 1~ 1.0mol·L- 1的甲酸浓度范围内 ,可用PAN(Pt)电极作传感器定量检测甲酸浓度 .  相似文献   

3.
王冬梅  罗维忠 《河南科学》1995,13(2):145-148
通过循环伏安法合成聚苯胺膜电极。聚苯胺膜电极对儿茶酚、抗坏血酸、氯化亚锑有电催化作用,与光亮铂电极相比它们在膜电极上的峰电位差减小,峰电流增大。通过旋转圆盘电极研究其催化动力过程动力学。  相似文献   

4.
采用循环伏安法电化学聚合制备了聚苯胺/聚砜复合膜电极,研究了复合膜电极对对苯二酚和邻苯二酚的单组分及其混合体系的电催化氧化.结果表明聚苯胺复合膜电极具有很好的电催化作用,在混合体系中对苯二酚的一对氧化还原峰和邻苯二酚的两对氧化还原峰能够清楚地区分;并且在一定的浓度范围内单组分的浓度与峰电流呈良好的线性关系,说明该电极对苯二酚的测定在定性、定量中具有潜在的应用价值.  相似文献   

5.
利用循环伏安扫描法将苯胺修饰在玻碳电极表面,形成一层聚合物膜,制成聚苯胺修饰电极.电聚合的最佳条件为:循环扫描上限电位0.95 V、下限电位-0.2 V、掺杂质子酸为盐酸,其浓度为2.0 mol/L、苯胺单体的浓度0.5 mol/L、扫速50 mV/s.该修饰电极对肾上腺素有较好的电催化氧化效果,并提出电化学测试分析儿茶酚胺类化合物的可能性.同时分析和比较了聚苯胺膜对肾上腺素和邻苯二酚电催化氧化的区别.  相似文献   

6.
采用循环伏安法分别研究了甲醛、甲酸对铂电极上甲醇氧化的影响.结果表明,加入甲醛可使甲醇的氧化蜂电流增大,进一步分析说明,甲醇氧化蜂电流的增加不单是由于甲醛的氧化引起的,甲醛的氧化中间体或解离产物在铂电极上的吸附也促进了甲醇的氧化,并提出了可能的吸附模型.而甲酸对甲醇氧化的促进作用不明显,可能与甲酸甲酯对甲醇氧化的抑制作用有关.  相似文献   

7.
采用脉冲电位法在钛电极表面合成了聚苯胺-三氧化钨(PANI-WO_3)复合膜.扫描电镜照片表明,粒径100~150 nm的WO_3颗粒较好地分散在纳米纤维状PANI中, WO_3在膜中的嵌入对PANI的形貌没有产生明显的影响.研究结果表明,PANI-WO_3膜具有良好的导电性,有着比单纯纳米纤维PANI更小的电化学阻抗.与Pt/PANI电极相比较, Pt/PANI-WO_3电极对甲醛的电化学氧化呈现出了更好的催化活性;在相同的PANI膜厚和Pt载量的条件下,Pt/PANI-WO_3电极对甲醛氧化催化活性是Pt/PANI电极的2~3倍.  相似文献   

8.
碳载铂电极在甲酸氧化中的电催化特性   总被引:3,自引:0,他引:3  
通过对碳载铂电极在甲酸氧化中电催化特性的研究,证明在玻碳表面镀铂黑制备高活性、低成本、新型实用型电催化剂的方法是成功的.研究结果表明,甲酸在碳载铂电极上电催化氧化是按双途径机理进行的.  相似文献   

9.
离子掺杂聚苯胺电极对抗坏血酸电催化氧化的促进作用   总被引:2,自引:0,他引:2  
利用循环伏安法研究硫酸锰在聚苯胺电极上对抗坏血酸的电催化氧化.结果表明,聚苯胺电极掺杂Mn^2 以后对抗坏血酸有更强的电催化氧化作用.  相似文献   

10.
用电化学循环伏安和石英晶体微天平研究了碱性介质中正丙醇在Pt电极和以Sb,S吸附原子修饰的Pt(Pt/Sbad和Pt/Sad)电极上电催化氧化过程。结果表明正丙醇的氧化与溶液酸碱性关系密切。酸性介质中正丙醇在Pt电极上的CV曲线有两个正向氧化峰,而碱性介质中只有一个正向氧化峰,第二个氧化峰的消失可能是由于碱性介质中电极钝化引起的。与Pt电极相比较,饱和Sb吸附原子修饰的Pt电极使碱性介质中正丙醇氧化的峰电位负移了0.10V,峰电流增加了2.2倍,表现出显著的电催化活性。相反,Pt电极表面S吸附原子抑制了正丙醇的电氧化。还从表面质量变化提供了吸附原子电催化作用的新数据。  相似文献   

11.
在硫酸溶液中利用循环伏安法在燃料电池的支持电极碳纸上,电聚合导电高分子聚苯胺用于催化剂Pt的负载.聚苯胺载铂电极(Pt/PAni/C)的制备,提高了Pt的分散度,增加了Pt在电催化体系中的利用率.扫描电镜表征的结果,Pt/PAni/C上的Pt颗粒大小为0.4μm左右.通过比较乙醇的电催化氧化活性可知,Pt/PAni/C催化氧化乙醇的最大电流为16.7mA/cm^2,为直接碳载铂电极(Pt/C)最大氧化电流5.2mA/cm^2的3.2倍。  相似文献   

12.
利用循环伏安方法电聚合导电高分子聚苯胺.用于在直接甲醇燃料电池电极中负载催化剂Pt.聚苯胺载Pt电极(Pt/PAni/C)的制备,提高了Pt的分散度,增加了Pt在电催化体系中的利用率.交流阻抗测试结果表明:Pt/PAni/C与直接碳载Pt电极(Pt/C)相比,电化学反应电阻减小,催化活性增高.通过比较Pt/PAni/C与Pt/C对甲醇的电催化氧化活性可知,Pt/PAni/C电极催化氧化甲醇的最大电流为50.7mA/cm2,是Pt/C电极最大氧化电流(7.6mA/cm2)的6.67倍.  相似文献   

13.
利用循环伏安法等电化学方法研究了甲醇在铂微粒修饰的玻碳电极上的电催化氧化,结果表明,铂微粒修饰玻碳电极(GC—Pt)对甲醇电化学氧化呈现较高的催化活性,活化后的玻碳电极再修饰铂微粒表现更高的催化活性,其催化活性的大小与铂载量有关,同时测定了甲醇电催化氧化反应的动力学参数。  相似文献   

14.
研究了不对称配体氮苯甲酸氮乙二胺草酰胺镍配合物修饰电极的制备 ,用循环伏安法探讨了该修饰膜的电化学性质及其对甲醛的电催化氧化。在 0 .1mol·L-1NaOH溶液中 ,膜的循环伏安图在 0 .4V和 0 .3V处有一对准可逆的氧化还原峰 ,对应着Ni(Ⅱ ) /Ni(Ⅲ )的氧化还原反应过程 ,属一电子过程 ,实验结果还表明电荷在膜中的传递为扩散控制。实验测定了在 0 .1mol·L-1NaOH中 3种不同厚度修饰膜电极、扫速在 10~ 40 0mV/s范围内氧化还原峰的特征。当配合物表面含量是 9.4× 10 -10 mol·cm-2 时 ,膜中电荷的扩散系数Dct是 1.1× 10 -12 cm2 ·s-1。该修饰膜对甲醛有良好的电催化作用且稳定性高 ,连续催化 2h以上峰电流才开始下降。常温下将修饰电极置于空气中放置 10d其催化性能也不发生变化  相似文献   

15.
研究了聚苯胺分散铂修饰电极及其电分析性能,并用于肾上腺素的电化学测定.在1.0mol/L的盐酸氯化钾溶液中,氧化峰电流与肾上腺素的浓度在0.9×10-5~2.5×10-3mol/L范围内呈良好的线性关系,检出限为1.6×10-6mol/L.可用于实际样品中肾上腺素的测定.  相似文献   

16.
聚苯胺在离子液体中的电合成及其电催化性质   总被引:4,自引:0,他引:4  
以离子液体1-丁基-3甲基咪唑四氟硼酸盐(BMIMBF4)作为溶剂及电解质,运用循环伏安法在玻碳电极上实现了电化学氧化聚合苯胺.聚苯胺膜修饰玻碳电极在空白离子液体及酸性溶液(pH=0~4)中均有较好的响应,并且对邻苯二酚及对苯二酚有很好的电催化效果.  相似文献   

17.
聚苯胺修饰铂电极的研究   总被引:1,自引:0,他引:1  
采用恒电位法和循环伏安法,研究酸性水溶液中苯胺在铂电极上电化学聚合的过程及其影响因素,初步探讨了聚合机理。结果表明,用恒电位法合成聚苯胺(PAn)时,电位应控制在0.70~0.85V之间,且苯胺的聚夸反应是通过阳离子自由基中间体进行的;用循环伏安法制备PAn膜时,扫描上限一般不超过0.90V。在此基础上研究了影响PAn电化学行为的因素及电化学反应机理。  相似文献   

18.
采用溶胶-凝胶和扫描电沉积法制备Ti基纳米TiO2-Pt(Ti/nanoTiO2-Pt)膜电极,Pt纳米粒子的平均粒径约为25nm.在离子液体+DMF(体积比为1:1)的混合溶剂中,通过循环伏安和计时电流法研究表明, Ti/nanoTiO2-Pt修饰电极对4-甲基吡啶(4-MP)的氧化具有高催化活性,同时讨论了4-甲基吡啶电催化氧化的机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号