首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
我国近代自然科学名词审定工作,始于清朝末年(1906年),当时,在大学部设立了科学名词馆,由严复任编纂。辛亥革命胜利后,江苏教育会之理化教授研究会曾组织过物理学、化学等名词术语的审定工作,1918年成立了科学名词审查会,着手分学科组织术语审定,1927年设立译名统一委员会,1928年大学院改组为教育部,专设编审处负责各学科名词审订工作,1932年成立国立编译馆,统由该馆组织专门队伍开展了多学科名词术语的审定,截至1949年新中国成立,该馆尚有数十种各学科名词术语草案,为新中国自然科学名词术语的审定与统一工作提供了素材,奠定了基础,为推动学术交流,繁荣学术气氛起了积极作用。一、解放前地质学名词审定工作的历史回顾地质学名词的审定,当以1923年董常所编《矿物岩石及地质名词辑要》〔1〕为最早,这虽然尚属个人编纂辞典之类,但他搜集之广,又经多人参与审订,订名上尚称准确、严谨,流传甚广。1927年大学院成立的译名统一委员会虽然着手审定矿物学、岩石学、地质学名词,但尚属初步草案。1930年杜其堡(1898-1942)编成了《地质矿物学大辞典》〔2〕,填补了当时中国自然科学名词辞典的一项空白,辞典共1145页,收录了地质学、矿物学、岩石学、晶体学、化石学、地文学名词术语,并选编著名地质学家的传略和肖像,除每条目做扼要解释外,尚附有插图说明,每条注有英文和德文〔3〕。杜其堡以10年之心血,倾注于这部辞典的编订,编成后又经著名地质学家翁文灏、赵亚曾等的严谨审订,正像翁文灏先生在序中所指:“按专门辞典之作,盖所以集学术之大成,便学者之检阅,意至善用至广也,……。地质矿物学辞典教育界既久感此需要,则杜君此编,固亦今日不可不有之书,殆亦今日中国地质矿物学界力能贡献之作”〔4〕。国立编译馆负责编订的有关地质学名词,分矿物学名词,普通地质学名词、岩石学名词,以及古生物学名词。矿物学名词于1932年着手收集材料,1933年开展审定,由当时教育部聘请了老一辈地质学家章鸿钊、丁文江、翁文灏、王宠佑、李四光、何杰、王烈、叶良辅、谢家荣、杨锺健等15人为审查委员,进行逐条审定,于1934年由教育部令公布,《矿物学名词》包括普通矿物学及矿物分类学,共6,000余条,附有英、德、法、日文〔1〕。在矿物订名上以矿物的物理性质为主,以化学特性为次,尽可能多采释义为原则,为我国的矿物命名奠定了科学的原则与方法。《地质学名词》(普通地质学)于1934年送教育部审核。教育部聘请了章鸿钊、丁文江、翁文灏、李四光、叶良辅、谢家荣、郑厚怀、王恭睦、朱庭祜等17人为审查委员,经一年多的逐条审订,于1935年发送中国地质学会复审,经过大量修改,于1936年整理公布,《地质学名词》近万条目,与矿物学相同,附英、德、法、日文〔1〕,仍以释义为原则,包括天文地质学、地形学、外动力地质学、火山、地震、经济地质学、构造地质学、地壳运动以及重要的地层学名词等,正是由于这部分名词包罗万象,虽然经过17人的审查委员会逐条审定,也难以一一修订完善,仍有不少不当甚或是错误之处,这在《地质论评》第3卷第3期(1938年)李悦言的专文中做了系统的评述〔5〕,不仅指出订名错误之处,也提出具体修正建议,如侵蚀盆地(Basin Karst)应改为喀斯特盆地,粘土石(claystone)应改为泥岩,冲积丘(Alluvial cone)应改为冲积锥等,不一一赘述〔5〕。国立编译馆虽然做过审定工作,还仅限于草案阶段,这就是解放前夕留下来的地质学名词草案,岩石学名词草案,矿物学名词草案等。二、新中国成立后地质学名词审定工作的发展新中国成立后,在中央人民政府文化教育委员会下,设置了学术名词统一工作委员会,属于自然科学系统由中国科学院负责组织各学科审查小组,地质学审查小组,聘请尹赞勋、王竹泉、王嘉荫、李春昱、侯德封、袁复礼、张文佑、陈光远、杨遵仪、谢家荣为委员,据我记忆,像孟宪民、冯景兰等也经常参加审定活动,经两年多的审定,于1953年定稿,在全国范围内征求意见后,于1954年正式公布〔6〕。这次审定公布之《地质学名词》乃以中英对照,以中文为正编,以英文为副编,其内容范围:包括地质现象、地质作用、地质构造、古地理、矿床学、工程地质学、水文地质学、地貌学,以及与地质有关的钻探,采矿部分名词在内,矿物、岩石以及古生物学名词另有编册,未列入其内,这次公布之地质学名词是由政府组织审定的,审定要求严谨,科学性较高,得到学术界的赞誉。按照地质学名词审定的原则与方法,于1954年公布了《岩石学名词》(汉英)〔7〕,《矿物学名词》(汉英)〔8〕,1956年公布了《英俄中古生物学名词》〔9〕;《综合地质学名词》〔10〕,1957年《水文地质学及工程地质学名词》〔11〕(俄中对照)。此外,还编订了中俄对照的《岩石学名词》〔12〕(1956年),俄英中《矿物学名词》〔13〕(1957年)。这里以中俄岩石学名词为例,说明其特点:1.范围:岩石学的原理、成因、分类、产状、成分、结构、性质、形变、内外作用等,都包括在内;2.订名:以物理性质为主,以化学特征为次。凡对特殊结构、构造以及特殊意义者,悉从其含义而定。3.文种:虽系中俄对照,仍附注相应的英文;有的选译名词,一般保持原作者所订原名,有德文、法文、意大利文等;4.审查组:聘请谢家荣、王嘉荫、苏良赫、冯景兰、何作霖、袁复礼、朱福湘、刘乃隆为审查组成员。这一时期自然科学名词审定工作,受到政府的关怀和重视,把这项工作提到了重要地位,正像郭沫若院长在《序言》〔14〕中所述:“目前我们国家正在积极准备进行计划性的经济建设。为适应这种需要,文教部门必须大力发展科学研究事业与技术教育,大量培养科学技术人材……。因此各种学术专门名词之使用,已经不只是少数高级知识分子的事情,且已成为广大人民的需要。这些情况说明统一学术名词工作在今天尤其有重要的意义”。同时,还着重指出:“这些工作乃是一个独立自主国家在学术工作上所必须具备的条件,也是实现学术中国化的最起码的条件。由于这样,统一学术名词工作才具有它实际的迫切的需要,……。”〔14〕正是由于国家的重视,才获得较大的进展,取得可喜的成就,公布了一批又一批自然科学名词术语,为全面发展我国的科学技术,做了一项重要的基础性工作。三、地质辞书词典的编篡弥补了审定工作的中断六十年代初到七十年代初期地质学名词审定工作虽一度中断,但有关出版机构,在严密组织下,以各种形式。聘请本学科学者、专家,集体编订了一批质量较高、有影响的辞书类工具书,为国内外学术交流、科研、教学、生产起了重要作用。下面选其一部分做简要介绍:1.《英汉综合地质词汇》〔15〕1970年由科学出版社出版,这是根据1957年版进行的修订和增补,共收集有关地质学、岩石学、矿物学、古生物学、地球物理学、工程地质学、水文地质学,以及深部钻探、采矿术语25,000条,该书出版后,深受读者欢迎,已多次重印,可以说,是我国地质工作者常备的工具书。2.《英汉矿物种名称》〔16〕这是中国矿物岩石地球化学学会、中国地质学会矿物学专业委员会联合组建的新矿物及矿物命名委员会审定,他们以Fleischer的《矿物种名汇编》(Glossary of Mineral species,1980)为蓝本,并参阅了国内外有关文献整理编订而成,多次经过专门审定会议讨论订名,组织了国内著名矿物学者进行严格审定。像蒋溶、陈正、池际尚、郭宗山、彭志忠、丁毅等都参加编订与审定工作。该书内容包括1980年底以前发表在国内外有关书刊的矿物名称、重要变种名、族名概称和同义词等共3,100词条,值得提及,书中还收入了新中国以来发现的新矿物,如黄河矿(Huanghoite)、湘江铀矿(Xiangjiangite),斜方钦铀矿(Orthobrannerite),氟碳铈钡矿(Bastnaesite)以及香花石(Hsianghualite)等,成为中国地质矿物工作者难得的工具书,为中国新矿物的研究和命名工作提供了重要科学资料。该书于1983年由科学出版社出版,1988年又重新发行了修订本。3.《英汉现代地层学词典》〔17〕1983年由科学出版社出版,该书收集现代地层学术语1,460条,每条做扼要的词义解释,尽可能运用当代术语学的基本原理,做释义性的解释,诸如地震地层学(seismic stratigraphy),定量地层学(quantitave stratigra-phy),动力地层学(dynamic stratigraphy)等术语。4.《英汉地质词典》〔18〕1983年由地质出版社出版,该书共收词近15万条,包括三十多个学科,主要有地质科学及其所属各个学科,其中有普通地质学、矿物学、岩石学、地层学、构造地质学、大地构造学、矿床学、工程地质学、水文地质学、地震学、火山学、煤田地质学、石油地质学、地球化学,也包括一些新兴学科,诸如遥感地质学、数学地质学、环境地质学、宇宙地质学等,组织国内二百位著名地质学家参加审定,是历经五年的成果。也是地质工作者常备的工具书,有着广泛的影响。5.《地质辞典》〔19〕1983年陆续由地质出版社分五个分册出版,该书是由原国家地质总局责成书刊编辑室和中国地质科学研究院组织力量编纂而成,历经几年的努力,有三十多个教学、科研和生产单位参加编订,经过全国四百多个地质单位征询意见和修改,是我国第一部综合性地质辞典(带有解释),包括四十多个学科,一万一千多词条,共达三百多万字,其特点是对许多地质科学的基本概念,做了定义性解释,特别是对具有中国特色的地质现象,分别做了论述,像在第一分册中大地构造学部分专门分列出中国区域构造,震旦地块、华夏地块、昆仑山地槽、喜马拉雅地槽、震旦褶皱带、喜马拉雅造山带等都一一做了基本概念及特征的论述。众所周知,中国大地构造学派是各有特点的,理论观点自成体系。该书中把几个主要学派各自分成独立系统,并集中篇幅加以注释,以不同学派的术语,反映出不同学派的理论概念,使读者对中国大地构造学说、学派有系统的概念,这正表现出中国地质术语是反映地质现象特征和概念内涵的。该书分列的主要学说有:多旋回说(65条),断块构造说(82条),地洼学说(86条),波浪状镶嵌构造说(65条);而地质力学则分为构造要素、构造地块、构造体系、构造级别、序次、岩石力学性质、构造应力场、地壳运动七大部分,所列词条较多(共364条)。此外,该书还比较系统地分列了板块构造说,使收集的词条术语更具时代感。《地质辞典》五个分册是:第一分册:普通地质学、构造地质学(上下册)第二分册:矿物、岩石、地球化学、同位素地质学等第三分册:古生物学、地史学、地层学等第四分册:矿床学、应用地质学、包括海洋地质学、工程、水文地质学〔19〕第五分册:地质普查勘探技术方法(上下册)此外,与地质学科密切相关的学科,还编篡出版了《英汉综合地震学与地球物理学词汇》〔20〕,《地球物理勘探词典》〔21〕《英汉石油地球物理勘探词汇》〔22〕,《英汉地质学缩写词汇》〔23〕、《古生物命名拉丁语》〔24〕、《自然地理学名词》〔25〕、《英汉自然地理词汇》〔26〕等,为地学界的学术交流,起了重要作用。四、当前地质学名词审定工作的现状上述地质辞书、词汇的编纂与出版,虽然弥补了统一审定工作的中断和不足,但由于各单位缺乏统一审定术语的原则与方法,出现了一词多义,或一义多词,特别是在引进新词中未能严格按术语学原则要求,缺乏科学性,使中文术语不能准确地反映所指概念,造成一定混乱现象。近年来地质科学迅猛发展,反映新学科、新理论、新概念的术语大量涌现,像环境地质学、灾害地质学、旅游地质学、城市地质学、农业地质学等新学科、新分枝的建立,都要创出反映新学科内容和术语体系,必须有一个统一而权威性的命名原则与方法,加之国内外学术交流的频繁,科技情报信息的传递,新学科的开拓、新概念的引进、科技图书文献的编纂、出版和检索,特别是科技术语库的建立与使用,都有待于科技术语的规范化、标准化。鉴于此,国务院委托国家科委、中国科学院组建了全国自然科学名词审定委员会,负责全国自然科学各学科的名词术语的审定与统一工作,1987年委员会委托中国地质学会组建了地质学名词审定委员会〔27〕,并初步制定了工作条例和审定原则与方法,确定了审定范围、审定步骤和具体工作安排。学会决定由当时的理事长程裕淇教授任主任委员,由两位副理事长王鸿桢教授、叶连俊教授为副主任委员,聘请著名地质学家30余人为委员。分为8个学科组:1.地质学综合名词组,2.地史和地层组、3.构造地质学组、4.矿物学组、5.岩石学(沉积学)组、6.地球化学组、7.矿床学(含能源地质学)组、8.环境地质学组〔27〕。经过1987年分学科收词,集中讨论初稿,1988年形成地质学名词草案,几经讨论和整理,于1989年,在程裕淇主任及两位副主任主持下,召开了第一次地质学基本词的审定会,出席会议的委员,历时三天分学科进行了严肃认真的讨论,最近确定第一批地质学基本名词约4500-5000条,其中地质学综合性名词170-180条,地史与地层学450-500条,构造地质学500-550条,岩石学850-900条,矿物学650-700条,地化800条、矿床学450-500条,环境地质学(水文、工程地质学)450-500条。《草案》整理后,将发送全国有关单位征询修改、补充意见。再经整理后,将召开第二次审定会,经过委员会讨论通过,送交全国自然科学名词审定委员会复审后,批准公布。五、关于地质学名词审定公布的几点思考即将公布的地质学名词,是第一批地质科学领域内的基本词,其数量仅在4500-5000词条,其余亦将分期分批由委员会负责审定,由全国委员会予以公布,其特点是由国家统一组织,有计划地进行审定,因此,审定的各学科术语,应达到标准可靠,这不仅要求在科学性上是高标准,而且也要在使用汉语特征上达到高水平,鉴于此,根据个人所接触的范围,提出几点建议,以供最后定稿时参考。1.补充与增加新名词术语问题现已初步讨论的四千余词条的地质学名词中,强调基本词较多,而有忽略反映地质科学新理论、新思维、新概念的术语较少,缺乏时代感、像近两年内实施国际岩石圈计划过程中形成的新学科,幔岩学、幔岩矿物学,特别是在地球科学面临横向交叉、综合、相互渗透的形势,涌现出大量交叉性理论和概念,像地质重演律、地质全息律、间断平衡论、海—地—气耦合,全球地学大断面(GGT)以及计算机断层摄影扫描术(CT)、地质回向系统、地质黑箱方法〔28〕等,认为在讨论过程,应适当增加一些反映新思维的术语,以表示公布的地质学名词有明显的时代信息。2.与相邻学科的重复问题地理学名词(第一批)共1428条已于1988年5月正式公布〔29〕,地球物理学名词(1339条)〔30〕。亦已公布,古生物学名词,虽包括一少部分地层名词,亦进入定稿阶段,因此,地质学名词(基本词)与相邻学科名词虽有一些的重复,地质学名词可能是在地学几个学科中最后公布的一种,避免重复与本学科的系统性问题,就自然成为突出需要讨论的课题,我认为,既是分期分批审定,就难以求全责备,宁可少些系统性,也尽可能减少重复,少数重复的术语,必须严格求其统一,不然就失去这次全国统一审定自然科学名词的真实意义。3.审定地质学名词工作中,要贯彻“双百”方针。学术论战是地球科学本身特点决定的,也是地学自身发展规律的要求,中国地质学就是在长期学术论争中求得发展和进步,近年来中国地质学界、学派林立,假说纷纭,可以说所有的理论、假说,都要以其明确的概念,创用术语来表达,术语的统一也是概念上统一,涉及到各学派对各种地质现象的不同认识和论点。矿床学领域内,有多源成矿理论,也有层控时控成矿规律,传统的还有热液,交代、围岩蚀变、变质、重熔、岩浆、火山喷发等成矿假说,国内都在不同时期,不同阶段进行过论战,也都有各自的侧重者,反映这些概念的术语选择和定义,则要历史而客观考虑,避免厚此薄彼,特别是在中国大地构造学的术语审定中更是敏感的学科领域,多旋回说理论、断块构造说、波浪状镶嵌构造说、地洼学说、地质力学,以及板块构造说,都各自有其完整的独立概念体系,各自创用一套反映其理论概念的术语,表达不同的论点,有别于其它学派,因此,在审定工作中要充分尊重现实,特别是在词条取舍中要慎之又慎,要公正地弘发各学派学术论点的概念系统,尽可能采纳其创用的术语。此外,还有中国冰川理论的争论、“中国贫油论”的争论以及地层划分、新矿物命名原则等,都应在相继公布的地质学名词中有所反映。4.与《地质矿产名词、术语及代码》的协调和统一问题。本文中列举的地质学词汇、辞典均属工具书类,而《地质矿产名词、术语及代码》〔31〕属于国家标准,它的覆盖面是全学科性的,涉及35个学科60分册,共10余万词条,既包括传统常用术语,也有现代地质学发展中新出现的概念。基本反映了地质矿产科学发展现状,是由国家技术监督局组织,地质矿产部牵头,动员各有关学科专家集体编纂而成,早已于1987年审议完成。这对地质学名词审定工作来说,一方面是创造了更有利的基础,许多词可以借鉴,另一方面重复是在所难免了。但这次审定工作可在科学性上,在确定术语反映事物内涵概念方面,多做些推敲;另一方面,在精选新词上,多从当代术语学的原则与方法方面显示出优势,以便使公布的地质学名词有自己的特色。更为重要的是加强与《地质矿产名词、术语及代码》的协调与统一。5,重视与台湾、香港地区以及汉语国家地质名词的协调。最近笔者阅读了台湾出版的《经济地质学的发展》,《台湾四十年的地质学的发展》、《台湾地质矿产现状》,特别是1981年由赵敏修编纂,台北出版的《地质学名词词典》〔32〕,其中有许多术语是与大陆不相同,其中有些地质学用语另具特色,像反映台湾地区地层、构造,特种地质现象的术语,也应适当选用。结语我国地质矿产事业发展迅猛,现在世界上已知的150多种矿产,我国都已找到,其中138种已探明了储量,稀土、钨、钼、钒、钛、汞、铅、锌、铜、锑等20种储量,居世界前列〔33〕;1∶20万区域地质调查实测面积639.97平方公里(1986年)达到应测面积88.9%;煤炭产量占世界第一位,钢铁占第四位,石油占第五位,黄金占第六位,有色金属占第七位〔34〕。全国地质系统大军已达百万,从事地质的队伍已达386861人(1986年)〔35〕地质学术语是这支大军的工作语言,学术活动的交流工具,因此,地质学术语的统一和规范化,就越发显示着紧迫性和重要性,特别是面临能源、资源、保护环境、防止和预测预报自然灾害的重大任务之际,这项工作更与经济建设,科学技术现代化密切相关,也是发展地质科学的基础性工作,〔附记〕本文是根据1989年3月第一次地质学名词审定会上的发言稿整理而成。  相似文献   

2.
线性代数教材介绍到矩阵求逆公式时,都要引进如下一个矩阵这里Aij(i,j=1,…,n)是矩阵A=(aij)n×naij元的代数余子式,但在构成(*)矩阵时转置排列了。此(*)矩阵在现行多数书中被称作A的伴随矩阵(adjoint matrix),并记作A*这一称谓沿用已久。就拿此中文译名来说,至迟在1956年的《数学名词》(中科院编译出版委员会名词室编订,科学出版社出版)中已这样定名。而在1938年的《算学名词汇编》(科学名词审查会编印)中,“adjoint matrix”则译作“附属方阵”。中译无可厚非,问题在于用adjoint matrix命名(*)矩阵是否适当?我们来看:首先,这一命名存在歧义的麻烦。因为线性代数课程本身以及一些后继课程,会要讲到概念与之完全不同的伴随矩阵,指的是矩阵A的共轭转置矩阵同一名词和符号,出现完全不同的涵义。这与数学名词(也是一般科学名词)的单一和专用,即(至少理论上)应是一词一义的单义性原则相悖。其次,从名词要与概念的内涵相符这一科学性原则考虑,“adjoint matrix of A”除了表明它与矩阵A的某种相关外,对于所指称的矩阵的特性几乎无所反映,所用符号“A*”在此对所表述的概念也不具有更多的启示。第三,再从名词的专业性和流行性(时代性)来考虑,不难发现几乎所有当代文献中A*的使用都是按照(2)的理解;而我国现行“国标”(GB3102.11-93)也明确界定符号A*在数学中指的是(2)。综上,可以认为用伴随矩阵A*命名(*)是欠妥的。一些作者就使用了另外一些名称。例如,有的使用经典(古典)伴随矩阵[1,2],冠以限制词来表示(*)矩阵;有的则回到早先的附属方阵[3]。在相应的符号上,有的仍沿用A*,有的则改用adjA。但是所有这些,说到底还是adjoint matrix,只是中文译名变化并未能改变问题之所在。另有一些作者使用了相伴矩阵(associate matrix)[4]、转置伴随矩阵(adjugate matrix)[5,6],从而回避了前述歧义问题,后者更点出了(*)矩阵“转置”的特性。顺便说一句,“全国自然科学名词审定委员会”公布的《数学名词》(1993年)已列入了“adjugate matrix”这一词条。笔者在[7]中曾对(*)矩阵使用了另一命名,着眼于准确明晰地反映这一概念的内涵所指的特征。事实上,(*)矩阵的元Aij是矩阵A=(aij)中aij元的代数余子式,这一事实不妨记为cofA=(Aij)即,“cofactor of matrix A”;又,这些Aij元在(*)矩阵中是经转置排列的,即有故此矩阵可直接称为A的余子式转置阵,记如(3)。很明显,这一命名和记号清楚地揭示了(*)矩阵的全部内涵与特性。作为一个组合派生名词,“余子式—转置—矩阵”的命名,在线性代数学科概念体系中,结构层次合理清晰,与相关概念逻辑相容成为一个有机组成部分。正确命名和规范使用数学名词与符号,是数学工作者和数学教育工作者共同关心的问题。笔者管见,难免失当,谨此就教于有关学者专家,期望引起进一步的探讨。 ① 较早指出(*)矩阵的转置特性的有如柯召译А.Г.Курош的《高等代数教程》(商务印书馆,1953)第102页,在译名“附加矩阵”后括弧内又写了“倒置矩阵”。  相似文献   

3.
“震旦”一词源于佛经,东晋帛尸黎密多罗译《佛说灌(贯)顶经》第六卷中有:佛语阿难……阎浮界内有震旦国[1]的记述;唐释慧琳《一切经音义七二玄应音杂阿昆昙心论:振旦,或作震旦,……旧译云汉国[2]。有的佛经上亦有译作“脂那[3]”,总之,“震旦”(Chinisthana)为古代印度人称中国之谓,即以后之“支那”,其源亦为秦国之秦的对音。汉语“震旦”一词既有代表中国之内涵,早期在文化教育界常有使用,诸如1903年天主教耶稣会在上海徐家汇创办以“震旦”一词为名的独立学院,即称震旦学院,后改为震旦大学[4]。1932年又另设“震旦”女子文理学院;甚至在国外也有使用,诸如1942年在巴黎创办有相当影响法国报纸“震旦报”(L’Aurore)是以“震旦”命名。“震旦”一词在中国地质学界的使用更是源远流长,有其特殊科学含意,主要是反映在地层、构造方面,在古生物、矿物术语命名上,也不乏以“震旦”一词命名,诸如震旦角石(Sinocerac),震旦矿等。本文就以“震旦”一词在中国地质发展史的演变,做如下的探讨。1.美国地质学家彭拜来(Pumppelly,Raphael,1837-1923)[5]于1862-1865年在华进行地质调查时,发现我国东部沿海各地山体结构,山脉走向皆呈北北东——南西西,把这一特征命名为震旦上升系统(Sinian system of elevation),以表示华北及西伯利亚东部北东方向的褶皱,后统称“震旦”方向(Sinian trend)[6],从此,“震旦”一词进入地质学的含义之中,作为中国构造地质学的一个特定术语。2.德国探险家李希霍芬(Richthofen,Ferdinand von,1833-1905)[5]在总结他1868-1872年在华考察工作时,于1877年把“震旦”一词引入中国地层系统,他认为凡在中国一切未变质之前寒武系及寒武系岩层,均划归震旦系(Sinian system)[7],由于这段元古代晚期地层最早在中国发现与研究,故以“震旦”命名,表示中国特有。纳入中国地质年代表为震旦纪(Sinian Period)。从文献记载,虽暂定为元古代晚期,大体从十九亿年开始到五亿七千万年结束,其岩相则主要是浅变质或不变质的沉积物为主。3.美国构造地质学家威理士(Willis,B,1857-1949)[8]于1903-1904年在华进行地质考察时,将李希霍芬创立的震旦系改为下震旦系——寒武系及上震旦系——奥陶系两部分,他认为在中国北部两者是不可分界。把李希霍芬之前寒武、奥陶系屏除于震旦系之外,命名为寒武奥陶系[9]。4.中国地质事业创建人章鸿钊、丁文江、翁文灏率领地质研究所学员于1914-1916年在北京西山及其周围进行野外地质实习中,做了大量实际剖面测量与分析,在1916年出版的《地质研究所师弟修业记》[10]中,系统地探讨了南口系并修正和补充了李希霍芬关于震旦系的划分,同时也提出了维理士上述方案两系合为一体的弊病,认为两系尚有一平行不整合,并以唐山临城等资料论证寒武系与奥陶系并非一体,而两系早为世界地质学家所贯用,于中国似未见疑义,《修业记》堪称是中国地质学家第一部考察报告。5.美国地质学家葛利普(Grabau,A.W.,1870-1916)[11]于1920年受聘来华,任北京大学教授,并受托于地质调查所专题研究震旦系,1922年发表了专论《震旦系》(Sinian System),他主张应缩小李希霍芬关于震旦系的范围,认为仅限于寒武纪以前之南口系,或滹沱系,并提出废弃维理士寒武奥陶之一体性之说[12]。6.比利时地质学家马迪幼(Mathieu)1922-1923年担任开滦矿务局地质师时发表了《直隶滦县震旦系地层》[13],文中简明地阐述了震旦系划分的原则及内涵界限。7.中国地质学家高振西早在北京大学学习时,就对中国震旦系发生浓厚兴趣,1930年发表了《“震旦”一词在中国地质学上的意义之变迁》,毕业后,1931-1933年对河北蓟县震旦纪地层做过专题调查与研究工作,1934年发表了《中国北部震旦纪地层》[14],以实际调查资料论述了划分震旦系的原则,比较系统地建立起中国北方震旦纪地层层序,建立起震旦系剖面,为三群十组,确定了蓟县岩石地层的基本格架。他的开拓性的工作,受到国内外学者的采纳和称赞。8.我国地质事业创建人李四光四十年代建立了中国南方震旦系剖面;在创立地质力学构造体系时;把与震旦方向相当的构造,称之为华夏系(cathaysian system)、中华夏系(Mesocathaysian system)及新华夏体系(Neocathaysian system)[15]。9.章鸿钊1936年创立“震旦”运动(Sinian movement),他认为中生代晚期至始新世后,中国东部地壳运动可分为五期,都与地震方向略近直角,他用地壳波动说和地壳均衡说来说明震旦运动的起源,他提出震旦运动是地下岩浆前后反复活动而引起的,同年,他还发表了《中国中生代初期之地壳运动与震旦运动之异点》,《中国中生代晚期以后地壳运动之动向之新认识》,对震旦方向、震旦运动做了独特的解释,1943年他还发表了《所谓震旦运动及对批评重加一省》。10.我国地层学家赵金科1936年发表了《震旦纪大地槽及其联合古陆中之位置》[17],在汇集世界各地震旦纪地层资料的基础上,论证了大陆漂移说。11.我国地质学家马杏垣1960年提出震旦系顶、底界面所代表的时限(震旦阶段)作为一独立的构造旋回,命名为震旦旋回(Sinian cycle)[18];同年把豫西黄山沉降带中震旦纪末的地壳运动,命名为震旦褶皱(Sinian folding)[19],并创立震旦褶皱带(Sinian fold belt)新概念[20]。震旦系岩层大都不整合于五台系,或泰山系之上,在我国北方殊形发育,尤以河北南口,山西滹沱区域为最,后来在湖北宜昌亦有发现,地理分布较广,其主要岩性:下部为石英砂岩、页岩或板岩;上部为硅质灰岩。兹将上述几位外国地质学家关于震旦系划分论点加以对比,以示解放前有关震旦系之划分。这里还应说明的维里士以山东张夏及新泰地区为据,强调不整合关系,当时另有一套划分系统。12.我国北方震旦系,以蓟县北部山区一条中上古界地层为标准剖面,俗称“蓟县剖面”,历经约十一亿年的沉积历史,以岩层齐全、山露连续、保存完好、顶底清晰、构造简单、古生物化石丰富、变质极浅、有上万厚的特点,显示出得天独厚的本色。早为国内外地质学家所共认[21]。1984年10月18日,经国务院批准,将蓟县剖面,包括长城系、蓟县系、青白口系的中、上元古界的地层剖面列为国家级地质自然保护区,填补了我国这类自然保护区的空白,成为国际地质学界探究古老地层的典型剖面[21]。为众人所向往。  相似文献   

4.
全国自然科学名词审定委员会(现名全国科学技术名词审定委员会)1993年公布的《数学名词》(科学出版社,1994)将条件命题pq的变形式:┐pq,qp,┐qp的汉文名及相应的英文词分别审定为:否命题 negative proposition逆命题 converse proposition逆否命题 converse-negative proposition但从相关的英文文献来看,上述英文名值得商榷。首先,笔者认为negative proposition的汉文名应该是否定命题[1-5],而不是否命题。如所周知,否定命题就是主联结词为否定词(┐)的命题,[6]相对于命题A其否定命题就是┐A。而否命题则是将条件命题pq的条件与结论分别予以否定后,得到的命题┐pq,它仍是一个条件命题。两个名词虽只一字之差,却要“注意不可以混淆”[7]。从《新牛津英语词典》我们知道:在逻辑中negative作形容词,可用来否定一个命题;作名词它就是negation的同义词。[8]而英文版的数学词典或教科书对negation的解释是:negation If p is a statement,then the statement ‘not p’,denoted┐p,is the negation.[9]由此不难看出,negative用以否定的是整个命题,而不是一个命题的某一两部分。文献[1]关于否定事实的阐述,引用了罗素的观点,也就是“Russell believes that negative facts exist and represented by negative proposition.”由于该文献前此有“事实可以用命题或判断来陈述。”故negative proposition被译作否定命题是十分恰当的。而把negative proposition译成否命题则有欠妥当。进而把converse-negative proposition当作逆否命题的英文名亦不可取。其实,在英文版的数学词典中不难查到相关词条:contrapositive The contrapositive of an implication pq is the implication ┐qp.[9]converse The converse of an implication pq is the implication qp.[9]这就是说,作为名词contrapositive和converse就是逆否命题和逆命题的英文名,英文版数学词典[10],以及笔者查到的十余本英文版教材或杂志,无一例外也都是这样定义或使用的。否命题一词的英文名使用频率稍低,《牛津数学词典》未予收录。但词典[10]中词条INVERSE,adj.,n.的子目:inverse of an implication.The implication which results from replacing both the antecedent and the consequent by their negations.明确地告诉我们,作为名词inverse就是否命题的英文名。英文版离散数学教材[11]也有相同的定义。另外,有台湾学者称┐qp为“原始条件命题pq的反命题”[12]。但从所给表达式易知,他所称之反命题,即《数学名词》所规范的否命题。再从其所附英文词亦可知inverse即否命题之英文名。理清了三种命题的英文名之后,笔者建议《数学名词》再版时,规范中学数学课本常说的四种命题。即原命题 original proposition逆命题 converse[of an implication]否命题 inverse[of an implication]逆否命题 contrapositive[of an implication] 注:遵从《数学名词》的编排说明,条目中[ ]内的词是可省略部分。  相似文献   

5.
Meridianal parts(MP)一词在现代航海科学中占有重要位置,特别是在现代航海技术的发展上有广泛的用途。例如,在电子计算机航法中(calculator navigation),或电子海图(electronic chart)的设计中,作为基本的数学模型就是建立在这一科学概念之上的。然而这一科学概念的汉语译名却十分混乱。译名多达五六个:如“纬度渐长率”[1]、“渐长纬度”[2]、“子午线渐长率”[3]、或“渐长纬度率”、“经线弧长”[4]、“墨卡托海图上经度一分的弧长”[5]。其中在航海界最常用的是前两个名词,且长期争论未能统一。现在应借助审定航海科学名词之机,通过科学论证、相互协商、予以概念确切规范的汉语名称是十分必要的。我以为衡量一个译名是否准确规范,必须符合以下三个原则:1.要能正确反映这一科学概念的本质及其属性。一个科学名词术语通常具有鲜明确切的科学概念、严谨正确的科学定义。如果概念不统一、定义各异、或对这一概念的本质属性理解不同则命名就不能统一。上述六种命名,对这一科学概念的本质属性,可概括为两种学术观点:一个观点为“率论”,认为MP的本质属性是倍率、比率(ratio)或百分率(percentage)、如“纬度渐长率”,“子午线渐长率”或“渐长纬度率”等。另一种观点为“长度论”的观点,认为MP的本质属性,是“弧长”、“线长”等、如“渐长纬度”、“经线弧长”等。这两种观点那个观点正确反映该概念的本质属性呢?率论者的观点,据《航海表》对该词的解释:“表中所给纬度渐长率是墨卡托海图上1′赤道海里长度的倍数,也是以墨卡托海图上1′经度为单位的数值”[6]。根据“率”的一般概念,倍率、比率或百分率均为无名数,而MP的单位(赤道海里)则为名数。由之可见“率”的命名,在概念上是混乱的,在解释上是自相矛盾的。另一观点“长度论”,认为MP的本质属性是“弧长”,“渐长值”或“距离”。其值为名数,单位为赤道海里或图上经度1′的弧长。这种观点是否正确反映MP的本质属性呢?可参阅英、美、俄等国有关该词的定义:英国为“Length of any parts of an extended meridian”[7];美国是“The length of the arc of a meridian”[8];原苏联为“Рассмолнне на церкомрекой карме”[9],其本质属性均为“长度”或“距离”,而非“倍率”或“比率”。可见“长度论”的观点,基本反映了MP的概念本质属性的。致于这一概念的严格定义,可用数学公式表述如下。因为数学语言的表述是最精确科学的。墨卡托海投影原理图根据墨卡托海图的投影原理,如附图:假设地球为椭圆体,地心C与重心重合、R为赤道平均半径;φ为纬度,则:MP=R tan φ (1)若以赤道的1′弧长(即赤道海里)为单位则:式中M为子午线曲率半径,r为纬[度]圈半径。当φMP为有限增量时则:MP=dMP;sinφ=dφ将其代入(1)式,并求其定积分得:因为:式中:α为地球椭圆体长半轴;e为地球偏心率。将上述值代入(2)式,展开并整理即可求出MP公式:将上式乘以(N为任意数,其商为常数,C=2.302585093),即将自然对数式转换为常用对数式:上式(2)比较科学而又准确的描述了MP的基本概念和科学定义。其定义域0→φ。将其用文字表述,可定义为“在墨卡托海图上,渐长子午线由赤道(φ=0)至某纬圈的长度,以赤道海里为单位,称为渐长纬度,符号为“MP”。这是根据纬度的涵义:“Angular distance from Equator. Measured by arc of meridian intercepted by Equator and paralle of latitude”[10]。既然在地球上子午线的弧长称之为纬度,则在墨卡托海图上,渐长子午线的长度称之为“渐长纬度”也就是顺理成章无可非议的了。2.科学译名应符合汉语构词的基本规律和特点。这是衡量译名是否确切的又一原则。某些汉语词汇具有相关性或对称性的特点。譬如“率”的相关词:利率与利息、变化率与变化量、渐长率与渐长量等等,这些相关词往往存在着某种数字的相关性。如果将MP命名为“××渐长率”则其相关词“××渐长值”将是不可思议的。如果将MP命名为“渐长纬度”则其相关词“渐长纬度率”则可定义为:“在墨卡托海图上某纬度(φ)的1′弧长与赤道1′(或图上经度1′)弧长之比”,其值约等于纬度的正割(secφ)。其准确度为±0′.01。可通过《航海表》表Ⅲ-3计算出纬度1′的弧长,加以对比如下:渐长纬度率secφ,在理论上表述了“在墨卡托海图上,纬度的1′弧长,随纬度的增加而渐长,其渐长值等于secφ。在航海实践中,secφ具有重要的意义。例如在海图作业中,为什么要求在纬度圈附近量取“距离”或“长度”;也是天文定位中,作图法求纬度差的理论依据。3.译名要遵循“副科服从主科,主科尊重副科的原则”。航海是一门多学科综合性应用的学科。地文航海是《测量学》的应用学科,《测量学》上已定名MP为“渐长纬度”,如果没有概念上的错误、则“纬度渐长率”就应该加以正名,改为“渐长纬度”。这就是结论。如果将定义域改为某一给定纬圈至另一给定纬圈间渐长子午线弧长,则此渐长子午线可称为该两纬度间的渐长纬度差,符号DMP。则原用的“纬度渐长率差”则应改正为“渐长纬度差”。注释〔1〕“纬度渐长率”见台湾《航海航业专科大词典》,台湾五洲图书出版社,1984年。〔2〕“渐长纬度”参阅日本四之宫博编(英和航海用语辞典》新订版,成山堂书店,昭和58年。〔3〕“子午线渐长率”参阅《综合英汉大词典》,上海译文出版社,1989年。〔4〕“经线弧长”参阅《英汉科技大词库》、《英汉现代科技大词典》、《新编英汉科技大词典》等,科学出版社。〔5〕“墨卡托海图上经度一分弧长”,参阅《英汉辞海》,国防工业出版社,1987年。〔6〕《航海表》,海司航保部,1962年,书号B101。〔7〕C.W.T Layton, Dictionary of Nautical Words and Terms, Revised by Peter Clissold 1982.〔8〕Bruvditch, American Practical Navigator ‘Glossary of Marine Navigation’ 1981 Defense Mopping Agency Hydrographic Topographic Center.〔9〕в.х.Кузнецо, “навигация”, издатепьство морской транспорт, 1956.〔10〕A.S.Hornby, The Advanced Learner’s Dictionary of Current English with Chinese Translation, Oxford University Press,1970.  相似文献   

6.
本人在《自然科学术语研究》1988年第1期上简述了数学、物理学、化学、植物学以及土壤学术语的溯源及其演变,引起了关心科技术语工作者的兴趣,特别是术语学界的关注。这里再仅就地理学、地质学术语的来源及演化作扼要介绍,以供广泛探讨。六、关于地理学名词的溯源“地理”一词,在我国最早见于战国时期,其含义是指地表的形态而言〔1.2〕,有些古籍中以“地”是天的对应概念而出现。最早在殷周之际,《晋书天文志》中的盖天说〔2〕,以及以大地球形理论为中心的浑天说〔2〕均属于此类。像《管子·形势解篇》就有这样的记载:“明主上不逆天,下不圹地,……。乱主上逆天道,下绝地理;……”〔25〕。《礼记·月令篇》:“毋变天之道,毋绝地之理,毋乱人之纪”〔2〕。《周易·系辞》上也有:“仰天以观于天文,俯以察于地理”。上述地理概念〔3〕,在唐代孔达的《周易正义》中,做了明确解释,他说:“地有山川原隰,各有条理,故称理”。八封歌中释“乾为天”,“坤为地”,“兑为泽”,“艮为山”,“离为火”,“坎为水”,“震为雷”,“巽为风”,显然,这里所说的山川水泽都是自然现象。上述所说“俯以察于地理”,即为山川原隰之理〔4,5〕。《汉书·郊祀志》也说:“山川,地理也”。东汉王充的《论衡·自纪篇》中:“天有日月星辰谓之文,地有山川陵谷谓之理”。这显然把山河大地及其形态特点称之为地理〔1〕。我国典籍中记述地理概念及其演变的著作颇多〔26,27〕,主要有:(1)《管子》〔5,8,9〕,其中《地员》,《度地》,《数地》,《地图》等篇,总结早期人类对土壤、植物、水利、河流分布与演变等知识。(2)《山海经》〔5,10,11〕,包括《山经》、《海经》、《海内经》、《大荒经》四部分,其中以《山经》,又称《五藏山经》为重要,分别记述大山五百多座,记述内容有位置、高度、形状和面积,记述河流三百多条,包括河流流向、分水岭,流量变化等。是研究古代地理的重要文献。(3)《禹贡》〔5,1 0〕,是先秦时代地理思想的代表作品,分九州、导山、导水、水功、五服五章,是我国最古老的水文地理、山岳地理等论著,像九州划分原则,显示出我国古代自然区划萌芽的地理思想。(4)《尔雅》〔5,9,10,14〕是我国最早解释词义的博物辞典,其中《释地》、《释丘》、《释山》、《释水》四篇对地形、河流、地质以及矿物等都做精辟的解释。像《释地》中对地形分类,就以地理基本概念为基础。如“下湿曰阴,大野曰平,广平曰原,高平曰陆,大陆曰阜,大阜曰陵,大陵曰阿”;《释水》中分为滥泉、沃泉、酒泉、肥泉、粪泉、瀣泉、汧泉、埒泉等。(5)《水经注》〔15〕是北魏地理学家郦道元(466-527)编撰而成,为我国一部综合性地理著作,书中记述大小河流1252条,比原《水经》137条增加约十倍。作者在叙述每一条河流中,包括了河流的源流、主流、支流、流向以及河道所经过的山陵、原隰、城邑、关津和建制沿革等。书中还记述了火山、地震、地裂、山崩、滑坡、陨石、泉、瀑布、河、海、湖、陆地变迁,同时还包括农田水利以及矿产资源等。记述范围颇广,东北到鸭绿江,东到东海之滨,南至中南半岛,西到印度,西北到伊朗,黑海,北至大沙漠。我国地理思想的发展〔16〕,不仅在历代古籍中有大量精辟的描述,而在沟通东西方地理知识上也有过广为称赞的业绩。早在汉代,公元前138-126,汉代使者张骞(?—B·C 114)出使西域〔1,4,5〕到达天山西麓和锡尔河谷地带;399-413年东晋僧人法显(约337-422)〔17〕曾到达斯里兰卡,印度尼西亚的爪哇和印度,并著有《佛国记》〔5〕;公元628-645年唐代高僧玄奘到达过印度、尼泊尔、巴基斯坦、孟加拉等地,著有《大唐西域记》〔5〕。这些学者的游历及其论著,扩大了地理视野,丰富了我国古代地理思想,经他们创译的地理概念和术语,对我国地理学的发展起过重要作用。1275-1295年意大利马可·波罗(Marco-Polo,1254-1324)〔1,4,5〕在中国游历近20年,遍及十余省区,在其《马可·波罗行纪》中,最早传播了东方,特别是中国的地理风貌、物产和文物知识。1405-1433年明代航海家郑和〔1,1,5〕(1371-1435)曾七次下西洋,横贯西太平洋和印度洋,最远到达非洲东岸和红海海口,沿途进行测量,编制了闻名的《郑和航海图》,这是十五世纪我国最详细的亚非地图,显示了当时我国学者掌握了沿海地区的地理知识。该图成图的指导思想是抛弃了传统的天圆地方说和华夏寰宇中心的旧观念,他以明确地理概念的术语,标志在海图上,这在航海史上留下了光辉之页。1582年来华的意大利耶稣会传教士利玛窦(Ricci Matteou,1552-1610)根据亚皮安(Peter,Apian)、墨卡托(Gerardus Mercotor)定向世界全图投影,编译了《万国舆图》(1602年)以及著作《测量法义》(1614)传来了比较系统的西方近代地图、地理知识,创用了一批汉文地理术语〔16〕。1847年,清道光丁未年出版的葡人玛吉士(Martins一Marquez Jose)著的《新释地理备考》〔18〕又名《外国地理备考》,该书作为海山仙馆丛书出版,书中把地理概念划分为文、质、政三等,综合论述了各国地理位置及物产分布情况。该书第一卷中,对地理概念解释为:“夫地理者,地之理也。盖讲释天下各国之地式、山川河海之各目”。包括内容较为广泛,其中有:《地球论》、《冰论》、《潮论》、《水论》、《原论》。《河论》、《地震论》、《火山论》等。其它像林则徐(1785-1850)的《四洲志》(1840年),魏源(1794-1857)的《海国图志》*(1842年),徐继畲的《瀛洲志略》(1848年)等作品,都是我国早期富有丰富地理内容的论著〔22〕。其中,应以英国伦敦会教士慕维廉(Muichead William,1822-1900)的《地理全志》18〕影响重大。他1846年来华,1852年以“地理”一词为书名,用汉文撰写了《地理全志》,由江苏松江上海墨海书馆印行,全书分上下两编,书中对地理概念做了明确的解释,指出:“天地理者,分文、质、政三等,乃地之理也”,所指“文”乃地文之意,属于自然地理范畴;所谓“质”见下一节《关于“地质一词的溯源”》;所谓“政”是指地理的政治区划,即世界地理之意。其中有《地文论》、《地势论》、《水论》等。同时,慕维廉还在1875年创刊的《六合丛谈》上发表了不少地理学方面的文章,诸如《地球形势大率论》、《水陆分界论》、《洲岛论》、《山原论》、《平原论》、《潮汐平流波涛论》、《河湖论》等,就在这批论著中,创用了一批近代地理概念的汉语术语,有的沿用至今。1869年在江南制造局内〔19〕,设立了翻译馆,组织中外学者翻译出版近二百种西方科技论著,专以“地理”一词命名者,尚未发现,属于地图、测量方面的则有《测绘海图全法》、《测地绘图》、《绘地法原》、《海道图说》、《平原地球图》、《八省测海图》等。1899年中国地学会创建人之一张相文〔20〕(1866-1933)在上海南洋公学讲授了地理课,1901年编写了《初等地理学教科书》和《中等本国地理教科书》,这算是我国学者最早自编的地理学教科书,发行200万册。1905年还撰写了《地文学》一书,在“绪论”中对地文学与地理学之间的概念做了精辟论述,他指出:“地文学者,地理学之精髓也。言地理必济以地文,其旨趣始深,乃不病于枯寂无味,而于他学科亦多互相关联,如天文学、地质学、动植物学、人种学、气象学、物理学、化学,莫不兼容并包,以为裨益人生之助……于以统合各科,而崭进于实用,此地文学所以为最重要之学科也,〔20〕。1909年发起建立了我国第一个地学学术团体——中国地学会〔20〕,并创办了我国第一个地学专业刊物——《地学杂志》,从1910-1937年间,共约发表论文1600 篇,其中绝大部分是属于地理学范畴的作品,也有一批引进西方近代地理学思想的论文,诸如汗庭顿(E.Huntington)的《人生地理学》,开尔底(J.S.Keltie)和霍华茨(C.J.R. Howarth)的《地理学史》以及纽毕金(M.J Newbigin)的《近代地理学》等,创译了一些反映近代地理概念的汉文术语,为近代中国地理学的发展与繁荣,奠定了一些基础。嗣后(1934年),中国地理学会诞生,标志着我国近代地理学蓬勃发展的新阶段28〕。英文“Geography”(地理学)〔21〕源于希腊文γη~(地)γρáω(描述)是人类作为其周围环境的认识而出现,因此说,地理知识是同社会生产和生活活动同是萌芽、发展。包括自然地理学和经济地理学的科学的综称。自然地理学研究围绕人类社会的自然条件,即地理环境——包括地壳、对流层、水圈、土壤、植物界和动物界。早期古代地理学并不是一种科学体系,而只是人类对地球表面一定范围的初步认识,带有某些推断性、像中国、巴比伦、波斯、印度、埃及等古老文明民族和国家,都属于地理知识发祥最早的国家和民族。古希腊人在地理学的发展上有着光辉的记载,像荷马史诗中就曾留下反映地理学概念的记述。公元前六世纪希腊哲学家毕达格拉斯(Pythagoras,约B.C.571-B.C.497)曾提出过地球球形说,泰勒(Thales,B.C.624-547),阿纳克西曼德(Anaximande,B.C.610-B.C.546),赫罗多特(Heroda tus,B.C.484-B.C.425)都对古代地理思想做过重要论述,其中亚里斯多德(Ari stote,B.C.384-B.C.322)的《论气象》对自然环境、海陆及其变迁,自然地理分布做过较为系统的论述。到公元前二世纪埃拉托色尼〔2,3〕(Eratosthones,B.C.276-B,C.194)在其论著《地理学概论》中第一次使用了Geography”一词,当时的含意即大地之意,因而,曾为西方地理学家誉为“地理之父”〔16〕。公元一世纪罗马帝国时代的学者斯特拉波(Strabo,B.C.63-20)〔21〕发表了名著《地理学》〔21〕,称之为世界上第一部论述欧洲、亚洲和非洲自然条件的地理志。全书共17卷,内容涉及整个地球理论和概念,创用了大量反映地理概念的术语,曾被译成许多种文字,在地理学发展史上颇具影响。著名古代天文学家托勒密〔16〕(Ptolemy,90-168)也曾发表过《地理旅行指南》(共8卷),门斯特(S.Münster,1489-1552)的《世界宇宙学》(共16卷)等著作,开创了地球表面图的先河。有力地推动了航行和旅行的扩大和发展。从而在地理学发展史上谱写出“地理大发现”的光辉篇章,地理学的视野,由局部各大陆逐步扩展到全球,把古代学者各自理解的局部世界概貌,合并成一个统一的地理体系,从而揭开近代地理学的序幕〔24〕。*系由林则徐主持翻译的西方史地资料《四洲志》增补而成,1817年修订为百卷。Yη-(地)和λσγοξ-(学说)并凑而成〔1〕。中世纪转为拉丁语geologiam,出现在1344年出版的《philobiblon》一书中,当时只是哲学上的用词,没有任何地质、地球的含意,1603年在波伦亚博物学家的一份遗稿上出现,Goologia一词,似乎与地球概念有了点联系,1661年,在一位博物学家R·罗维尔(Lovell)的《矿物通史》中,把“Geo1ogia”作为矿物学的一个分支,1663年皮尔逊(Pederson)翻译有关地震论述中,把“Goo1ogia”词作为与地球的力相关,1687年E·瓦尔林(Warren)和F.谢萨(Sessa)分别用英文、意大利文出版了标题为“Geologia”的论著,书中为这个词下的定义,是讨论地球及其影响。当时使用不广,未能作为欧洲语言被采纳〔2,3〕。英语“Geology”一词第一次出现在1735年马丁的《哲学纲要》上,其含意是:从自然科学角度来考察地球上所有的水陆部分和物产,诸如:矿物、金属、石块等等:书中并把其含意分为两部分,(1)论述陆地的自然地理学;(2)论述地球的水体部分和一般特性的水文学。他把地理学又分为特殊地理学、矿物学、描述植物学和动物学;他指的矿物学更是广义的大概念,包括泥土、矿砂、化石、矿物、金属、石块及生物遗骸等。马丁的这种分类思想在十八世纪中期是具有独创性的,可以说,他为“Geology”一词作为现代地质学概念的建立,奠定了理论基础〔3〕。当时也有一些学者认为Geology应是论述地球的性质、构造、各组成部分和产物。这就越发接近地质学现代概念。后来,在马丁的《哲学基本原理》一书中,又被定义为研究“地球的总学说”。1736年在《不列颠词典》第二版仅作为补遗条目列入书中,没作为一个独立学科,其解释是“有关地球的专题论述”。1755年“Geology”一词正式编入S.约翰逊(Johnson)主编的《英语词典》之中,并以马丁的定义为准,其解释是:“地球的总学说,地球的状态和性质的知识”。1764年在《实用英语词典》中基本上是完全接受马丁的定义,但只是特别强调它的自然性〔3〕。1778年,法国学者赖克(Jean.Andre Deluc,1727-1817)在其论著的序言中拟用“Ge1ogy”一词表示地球科学概念,但因认为当时尚不够成熟,仍然采用当时流行的“Cosmologie”一词,而在注解上作了如下的说明:“我在这里使用Cosmologie-词的意义,只是指地球的知识,不是指宇宙的知识。在指地球知识时,Geologie(Ge-ology)一词,应该是一个更合适的词,但因这个词尚未被人们普遍使用,我也未敢使用”。第二年,该书出第二版时,见到索修尔大胆使用了“Geologie”一词,他也立即采用。瑞士学者索修尔〔4〕(Horace Benedict de Saussure,1740-1799)在1779年发表《阿尔卑斯山旅行记》时,首次使用了这个词表示地球科学概念。索修尔自幼喜爱登山漫游,经常出没在日内瓦山,采集标本,1762年受聘于日内瓦科学院博物学教授,一生曾14次攀登过阿尔卑斯山,历经艰难险阻,以他惊人的毅力和旅行家的洞察力,终于完成了对阿尔卑斯山的系统考察与研究,并于1794-1799年完成了《阿尔卑斯山旅行记》的撰写,全书共为四卷,书中对阿尔卑斯山的地质构造,冰川分布及其活动情况,做了系统论述。在第一卷中,他使用Geologie一词,虽然仅限于地球科学的纯理论概念,而在三、四卷内,其定义就完全接近现代地质学的基本概念〔4〕。英国爱丁堡火成论学派的代表人物郝屯(Hutton,1726-1777)在1785年发表其名著《地球理论》时也曾使用了“Geo1ogy”这个词,而他的对手弗莱堡学派、水成论的创始人魏尔纳(A.G.Werner,1750-1817)仍沿用德文Geognosie(Geognosy)这个词来表示地球学科的总称,“关于地球的系统理论知识”的定义〔4〕,并以“Geognosy”一词为名,开设专题课程〔4,5〕,招来欧洲各国地质学家来弗莱堡听课。像布赫(L. von,Buch,1774-1852)和洪堡(A.von.Humbolot,1764-1859)等著名地质学家都曾听过他的讲演,成为他的得意门生。关于Geognosy与geology一词在含义上演变,下面再另做探讨。1810-1813年《不列颠百科全书》第四版,“Geology”一词就有五种不同含义和解释。1830-1833年英国地质学家莱伊尔(ch.Lyel1,1797-1875)名著《地质学原理》问世止,历经半个多世纪,“Geology”一词的定义概念基本统一,以近代地质学的理论方法,为学坛广泛理解和使用,从而地质学作为自然科学一门独立学科,立于众学科之林。在探讨“Geology”一词的来源与演变,必然要涉及它的同义词“Geognosy”,这是饶有趣味的史话,据已有资料,顺做概要论述。关于德反“Geognosie”,英文“Geognosy”,俄文“Teоднозчя”术语〔25〕,这是在地质学发展初期,特别是在十八世纪到十九世纪初,曾表示地球科学之总称,似可作为“Geology”的同义词,但各家的定义确各不相同,水成论者魏尔纳在1876年的一次讲演中专门对“Geognosie”,(Geognosy)一词做过论述,他认为“Geognosy”是论及整个固体地球及其分布的岩石、矿物物质成分、结构和组成的学科,应作为整个地球知识的总称。他专门开设了以Geognosy一词为题的专业课,就是要给学生以地球科学的纯粹理论,绝不包括空洞的推测和臆想在内,而强调从实际观察得来的地质事实,着重于地球本身的物质组成和结构。在德文《地质辞典》的解释中,认为这个术语是德国地质学家费希尔(Fuchsel,1722-1773)最先提出,他是用希腊文拼写而成,表示地球知识总称,由于他在建立地质系统的基本概念上有突出贡献,他的观点影响较大。英国出版的《地质辞典》中对“Geognosy”的解释,大致与魏尔纳论点相近,强调仅限于地球纯理论范畴,专指地球物质组成和结构,不包括推断和臆测,而对“Geology”一词则认为是两者兼而有之,既包括地质事实,也包含理论推测在内,这正是两个术语在概念上的区别。苏联1978年出版的《地质辞典》中则认为(Geognosy)“Гeотнозчя”一词是魏尔纳1780年提出,是在狭山范围内,对地球做经验性的描述,在十九世纪中叶逐渐为Geology所替代〔28〕。我国关于这个术语的汉语译法,正因上述资料来源不同,理解不一,译法各异。1957年中国科学院编译出版委员会名词室编《综合地质名词》中,则译为“记载地质学”,而在l970年出版的《英汉综合地质学名词》中译成“记录地质学”。1958,1965年地质部地质书刊编辑部编订的《俄华简明地质辞典》中译为“记载地质学”,“地球构造学”〔25〕。根据上述资料,我认为:(1)“Geognosy”按其命名的含义,一直有其明确概念,符合术语学原则〔29〕,似不应为“Geology”的同义词,而应以曾用名逐步淘汰;(2)建议译为地球物组学或译为地球组构学,专以表示记述地球物质成份及其内外组成、结构的学科。综观上述,从探溯“Geo1ogy”一词的来源、演变及其发展,充分反映了地质学本身的发展历史,从而使我们领会到,一个术语的探源和追溯,似乎就是在研究一个学科的思想发展史,确有其丰富的学术内容。汉语“地质”一词出现在我国科技文献的年代,同样有着一个漫长的认识过程,在八十年代以前,一般都以为是从日本引进的,其根据是鲁迅在日本留学时期,1903年曾在《浙江潮》上发表《中国地质略论》,因此,就认为这是“地质”一词首次出现在中国文献上之时,1983年日本弘文堂出版的《科学史技术史事典》〔5〕中“地质学”一条目中,仍说:“把geo1ogy译为‘地质学’是日本人箕作阮甫”所创。而没有说明时代。七十年代末期,一个日本代表团来华访问中,一次有我国地质学史专家参加的座谈会上,一位日本学者曾提及汉语“地质”一词是从中国引进的。其根据是:1859年日本安政六年,日本引进了在中国出版的《地理全志》,其下编就专有“地质论”之《地质志》一节,“地质”一词就从此而来;并说,该书对日本明治维新时期,传播地质学知识起过启蒙作用。从而,引起我国地质学专家的关注。地质出版社李鄂荣在主持编纂《地质辞典》过程中,查阅过大量文献,并对《地理全志》做过系统考证,其研究成果曾在全国地质学史学术讨论会上宣读过,其论文发表在1986年出版的《地质学史论丛》(一),题目是《地质一词何时出现于我国文献》〔6〕。笔者1983年在为中国科学院研究生院讲授地质学史专业课时,对“geo1ogy”及汉文“地质”一词概念的演变及其来龙去脉有着浓厚的兴趣,查阅过部分资料,并在《地球》杂志1983年第4期上发表短文《Geo1ogy一词的由来》。按照李鄂荣报告提供的线索,也阅读了《地理全志》,书中确实包含有许多近代地质内容,可惜了解此书的学者太少了,因而没能在发展我国地质学中起到应起的启蒙作用。英国传教士慕维廉〔7〕的《地理全志》下卷共十卷,其卷一“地质论”共分六节,其中《地质志》就是阐述地质概念的主要章节,也是在汉语文献出现“地质”一词最早的文献。书中指出:“夫地理者,乃地之理也。察地之土分文、质、政三等……,所谓质者,即地质之意,系地球之形质、以至盘石……地层的层系及其中所载生物草木之遗迹,海底之变迁等”。1873年玛高温口述,华蘅芳笔译的《地学浅释》〔8〕卷一“总论”中也论述有“地质”一词的近代科学概念,有其一定影响。从此,在近几十年过程中,虽然涌进了一批又一批外国地理、地质旅行者,探险家,以各种不同身份和目的,在中华大地上进行过大量地质考察和调查〔26〕,所获得的资料,基本上都是带回本国,以外文在国外学术刊物上发表,截止在上一个世纪末,尚末发现使用汉语“地质”一词的文献。仅在1902年清朝管学大臣张百煦主管京师大学堂年代,计划设置六种部门,其中在格致科内设地质门〔9〕,而仅在文献上出现“地质”一词,实际开设地质门,晚于1902年。1903年鲁迅以索子笔名发表了《中国地质略论》,这是中国人以“地质”一词为书名的第一部论著,影响深远〔10〕。1906年顾琅、周树人发表《中国矿产志》〔27〕一书,一些章节都涉及地质学及其含义;1905年中国最早的地学学术团体——中国地学会的创建人张相文编撰的《最新地质教科书》,可算我国第一部地质学教本,该书主要是根据日本地质调查所专横山又次郎的《地质学》编译而成,同时也吸收有关国外地质资料,全书共为四册,1909年由上海文明书局出版〔12〕。1909年11月14日北洋大学采矿系美籍地质学教师德瑞克(N.E.Drake)专门做了《论地质之构成与地表变动》〔13〕学术报告,后由王世美、耿北栋笔译成文,于1910年发表在《地学杂志》第1期上,同期上还有直隶省知矿师邝荣光的《直隶省地质图》〔14〕,同年我国近代地质学创建人章鸿钊〔15〕发表了《世界各国之地质调查事业》一文,从此“地质”一词,就以其近代科学概念,为我国学坛所接受,并得到广泛的使用。辛亥革命胜利后,就在南京临时政府实业部矿政司内,专门设置地质科,任命章鸿钊为第一任科长,并发表了《中华地质调查私议》〔15〕和《地质调查咨文》〔15〕。从此“地质”一词才进入国家政府的建制机构,成为繁荣国家经济,增强国力的重大事业。1913年建立的中国地质研究所,成为我国第一个培训地质人才的学校,1916年毕业的22位学员,其中一些人早已成为中国地质事业的开拓者;1922年中国地质学会的诞生,标志着中国地质学走向发展的新阶段〔22〕。从“地质学”一词含义的演变与发展历史,使我们对这个古老学科的认识更加深化,其传统的定义应该是研究地球的组成、构造及其历史的一门基础学科;研究沉积岩,火成岩、变质岩及矿床的形成规律和顺序;研究自然地理条件的交替和有机体在地球上的活动史〔1,17,23〕。地球是人类活动的舞台,地质学在人类生存、生活、生产实践中,不但有其重大经济意义,而对人类认识自然、了解地球的起源、发展历史以及人类自身的进化,更具理论上的价值,特别是当前人类面临人口、资源、能源和环境保护等重大课题的解决,更有赖于对地质科学认识的深化〔18,19,24〕,因此,对地质学一词的溯源,正是服务于对当代地质学的研究,进而对整个经济发展,社会进步以及人类文明的建设都是有意义的工作。当代地质科学研究特点是什么呢?概括地说,那就是强调对地球作为一个地球系统做整体性研究;同时,在研究方法论上,更趋于综合化,即宏观与微观的结合,定量与定性的结合,海陆交替互为补益,建立起一个各层圈间,各子系统间的统一体系,构成一个相互联系,互为作用的研究模式,更有效地解决面临的众多课题,造福于人类,促进自然界的和谐发展〔20,21〕。  相似文献   

7.
摘要 等差是等差数列最核心的本质特征。高阶等差数列(或称n阶等差数列)是等差数列的普遍形式,一阶等差数列是n阶等差数列当n=1时的特例。研究表明,高阶等差数列的差分性质在经济计量领域有明确的体现。例如,单整序列数据I(n)的差分性质即与n阶等差数列密切相关。遗憾的是,以往所见关于等差数列的讨论,大多围绕其一阶情况展开。有些常见的关于等差数列的定义也仅仅适用于一阶条件的假定,不能确切描述等差数列的高阶(二阶及以上)情况。为了适应经济计量研究与实践的发展,有必要重新研讨关于等差数列术语的定义问题。本文尝试提出高阶等差数列“隐蔽公差”的概念,同时给出n阶等差数列的形式表达以及n阶等差数列公差与其相对应一阶等差数列公差的换算关系式D=dnn!,其目的在于放宽约束条件,给出能够涵盖n阶等差数列情况、具有普适性的术语定义。高阶等差数列的差分性质在经济计量领域有明确的体现。例如,单整序列数据I(n)的差分性质即与n阶等差数列密切相关。对于单整序列数据来说,即使原变量数列不服从正态分布,经过数次差分之后也会“剔除掉某种固有的规律”而使数列趋于正态分布。事实上,差分剔除掉的这种“固有的规律性”即是n阶等差数列的主要成分,而所谓“经过数次差分”的次数,就是高阶等差数列的阶次n[1]。一、关于等差数列术语的定义和描述以往关于等差数列的讨论,大多围绕其一阶情况展开。目前常见的关于等差数列的定义(例如《辞海》乃至《数学辞海》当中的解释)也仅仅适用于一阶条件的假定,不能涵盖等差数列的高阶(二阶以上)情况。为了适应经济计量研究与实践的发展,有必要重新提起关于“等差数列”术语的定义问题。本文提出关于等差数列的一个术语:隐蔽公差,并以此为线索展开讨论。本文讨论的数列,仅限于单调递增的正整数序列。作为这些讨论的背景,首先需要了解什么是“等差数列”,以及“n阶等差数列”。顾名思义,等差数列应该是数列的一种。那么什么是数列呢?数列(定义1.0):序贯之数,谓之数列。一组数按第一个、第二个等等排下去就成为数列。其中第一数称为第一项,第二数称为第二项等等。当项数是有限时称为“有限数列”,否则称为“无限数列”。例如,1,10,100,1000,10 000,...和-1/2,-1/3,-1/4,...都是无限数列。经济研究当中涉及的数列大多是有限数列,但若以经济发展的延续论,这些数列则将体现出无限数列的性质。等差数列(定义1.1*):据《辞海》,若有数列从第二项开始,每一项与前一项的差均为常数d,则称该数列为“等差数列”,d,称为“公差”,等差数列的一般形式可以写成a,a+d,...,a+nd,...的形式。任一等差数列的前n项的和为n(首项+末项)/2。例如,自然数列1,2,...,n,...是等差数列,它的前n项之和为n(n+1)/2。显然,所谓“等差数列”的“等差”,就表现在它们具有常数公差d,通常讨论的等差数列为按照从小到大顺序排列的整数序列,故d为大于0的整数。公差(定义1.1.1*):根据《辞海》和《数学辞海》[2]的解释,在以“等差数列”为背景的讨论中,“公差”指的是“等差数列中相邻两项的差”。但是严格说来,这个定义不确切,或者说是不完全的。事实上,等差数列是有阶次的,例如数列1,2,3,4,5,6,...是一阶等差数列,其公差等于(2-1)=(3-2)=(4-3)=...=1;将一阶等差数列中的各个元素平方,则得到1,4,9,16,25,36,...,这是一个二阶等差数列。服从术语层次概念,二阶等差数列当然也是等差数列。但是(4-1)=3,(9-4)=5,(16-9)=7,(25-16)=9,(36-15)=11,...,也就是说,这个数列“相邻两项的差”不相等。这与前文所引“等差数列(定义1.1*)”存在冲突。在严格的意义上,对“公差”这个术语来说,应该是“一阶公差”的简称,其确切的定义表达应该是:(定义1.1.1)“一阶等差数列中相邻两项的差”。二、隐蔽公差和N阶等差数列的形式表达同样,上述所引工具书中关于“等差数列”的定义,实际上也是仅仅针对“一阶等差数列”而言。在高阶情况下,即当n大于1时,等差数列前n项之和的计算公式与一阶情况下的计算方法有所不同。如果按照前述所引关于“等差数列”的定义(定义1.1*),则相当于拒绝承认“高阶等差数列”是“等差数列”,因为根据高阶(二阶以上)等差数列的直观表现,其相邻两项的差并不相等。但是,二阶等差数列经过一次“差分”运算,即以数列的后项减去前面一项,可以得到一个一阶等差数列,这个一阶等差数列具有常数公差。我们称这个“公差”为二阶等差数列的“隐蔽公差”。以最常见的自然数列为例,该数列是具有公差d=1的一阶等差数列,记作{A1(d)},其中d=1,紧随字母A之后的上标数字表示该数列的阶次。对应地,将该数列中各项元素分别做平方运算,则构成一个二阶等差数列,{A2(D)}。定义D为这个数列的“公差”。如是,则分别有:{A1(d)}=1,2,3,4,5,6,7,8,9,… (1.1){A2(D)}=12,22,32,42,52,62,72,82,92,… =1,4,9,16,25,36,49,64,81,… (1.2)数列{A2(D)}没有明显可见的“公差”。但若对其施行一次差分,则得到:{A2-1(D)}=3,5,7,9,11,13,15,17,… (1.3)这是一个一阶等差数列,其公差等于2。对于这个经过一次差分得到的新数列,我们将其记作{A2-1(D)},其中紧随字母A之后的上标算式(2-1)表示对二阶等差数列进行了一次差分。观察{A2-1(D)},显然D=2,这就是高阶等差数列的“公差”,虽然这个公差不能从高阶等差数列的原始形态中直接观察得到,但它却是肯定存在的,由此我们称其为“隐蔽公差”。高阶等差数列具有数值确定的“隐蔽公差”。若非如此,便不能称呼这个数列为“等差数列”。仿照上述方法,继续再对{A2-1(D)}进行一次差分,则可以得到{A2-2(D)},这是一个所有元素都等于D=2的0阶“等差数列”。可以把这种情况看作是n阶等差数列的特例。对于{A2-3(D)}而言,数列当中所有元素皆为0,是更为极端的特例。不失一般性,我们给出关于“隐蔽公差”的定义以及适合所有阶次等差数列的形式表达。隐蔽公差(定义1.1.2):在等差数列中,需要经过一次以上差分运算才能观察得到的高阶等差数列的公差称为“隐蔽公差”,记作D。高阶等差数列具有数值确定的隐蔽公差。等差数列的形式表达(定义1.1.3):对于阶次为N,公差为G的等差数列A,记作{AN(G)},其中上标N可以是数字、算式或字母符号;G是等差数列的广义公差。高阶(二阶以上)等差数列的隐蔽公差D和一阶等差数列的公差d(可以对称为显见公差)统称为等差数列的广义公差。三、 等差数列与算术级数的概念比较为了继续以下的讨论,需要简单回顾关于初等级数当中算术级数的概念并与等差数列的概念加以对照[1]。一般来说,初等级数包括算术级数(也称等差级数)和几何级数(也称等比级数)。所谓等差数列,是一组数据按照一定(等差)规律依次排列的形式。这种形式类似于数学定义的等差级数,亦即算术级数,但是数列与级数二者所关心的具体侧面有所不同。数学定义的等差级数系指一和,即数列当中所有相关数项的加总值,而关于等差数列的研究似乎更关注数列各元素之间的关系,甚至不同阶次数列间数据变换的内在联系。如果考虑等差数列“前n项的和”,则与算术级数的关注点近似相同。通常意义上数列研究的对象是确切的数量关系,而不考虑随机变量的影响。经济计量学研究涉及的数据序列则表现为常规等差数列与随机变量的叠加,甚至等差数列的公差也可能存在随机扰动。例如,从1到100的自然数的和是一阶算术级数,其首项a=1,末项z=100,公差d=1,这个算术级数的值S=1+2+…+100=5050。显然,自然数构成公差为d=1的等差数列。相对应的,所有自然数的平方构成另一数列,这个数列的元素分别为12,22,32,42,52,…,即1,4,9,16,25,…,我们称其为2阶等差数列。同理,所有自然数的立方构成另一高阶等差数列,这个数列的元素分别为13,23,33,43,53,…,即1,8,27,64,125,…,我们称其为3阶等差数列。余此类推。等差数列的元素中可以含有截距因素。为简化起见,在本文的讨论中假定各数列元素的截距为0。记一阶等差数列为{A1(d)},d>0,其中包含数列元素ai,i=1,2,3,…,I。记2阶等差数列为{A2(D)},D>0,其中包含数列元素,i=1,2,3,…,I。记3阶等差数列为{A3(D)},D>0,其中包含数列元素,i=1,2,3,…,I。一般地,记n阶等差数列为{An(D)},D>0,其中包含数列元素,i=1,2,3,…,I。在这些记述中,D均为隐蔽公差,需要通过对数列内各相邻元素进行n-1次差分后得到。在n次及n次以上的差分过程中,各次所得之差均为0。四、隐蔽公差与对应一阶等差数列公差的关系高阶等差数列(或n阶等差数列)是等差数列的普遍形式,一阶等差数列是n阶等差数列当n=1时的特例。一阶等差数列具有常数公差d。对n阶等差数列而言,各相邻项的差乍看起来并不相等,只在第n-1次差分(后项减去前项)时才是常数。定义这个常数为n阶等差数列的公差,记作D。由于n阶等差数列的公差D不能从原数列中直接观察得出,故称其为隐蔽公差。高阶等差数列之“等差”即源于此。高阶等差数列的公差虽然“隐蔽”却是“确定的”。对n阶等差数列进行差分,其过程产生的结果即为n-1阶数列。称为“对等差数列的降阶运算”。按照上述定义,一阶等差数列记作{A1(d)} 。当公差d=0时,{A1(d)}退化成为{A0(0)},即所有元素相等的0阶数列。如果对应于数列{A0(0)}当中的每一元素ai=a分别加上随机误差项εt,则数列可表为截距水平在a的随机过程。这是一个I(0)即0阶单整过程。如前所述,对于{A1(d)},d>0,若取数列当中各元素ai(ai=ai-1+d)之平方构成另一数列,即可得到一个2阶等差数列。记作{A2(D)}。陈列{A2(D)}可知,直观上这个数列已经不再是等差数列。即ai-ai-1≠ai+1-ai。但是,对{A2(D)}进行一次差分得到的新数列{A2-1(D)},则是公差为D的1阶等差数列。n阶等差数列的隐蔽公差D是与其相对应的一阶等差数列公差d和数列阶次n的函数,即D=f(d,n)。此时满足关系D=dnn!。其中:D为n阶等差数列的公差(当n>1时即为隐蔽公差);d是与该n阶等差数列相对应的一阶等差数列的公差[4]。按照这个公式可以求出,对应于自然数列(公差d=1)的2阶等差数列和3阶等差数列的隐蔽公差D分别是D=122!=2和D=133!=6。同理,对应于公差d=2的数列(例如奇数数列或偶数数列)的2阶等差数列和3阶等差数列的隐蔽公差分别是D=222!=8和D=233!=48。总之,“等差”是等差数列最核心的本质特征。所谓等差数列,必有“等差”存在。对阶次n>1的等差数列而言,非经运算不能见其等差。因此,在高阶情况下,数列之等差是隐蔽行为。阶次越高,其公差隐蔽越深。另一方面,这个公差虽则隐蔽,却有明确的数值,并与与其相对应的一阶等差数列公差存在有稳定的换算关系。人们把“高阶算术数列”称为“高阶等差数列”,即是对其本质特征的宣言。  相似文献   

8.
摘要 本文对已公布的生命科学各学科名词的一义多词问题及其原因作了分析,并就解决该问题提出了两点建议。
自1989年全国科学技术名词审定委员会(原称“全国自然科学名词审定委员会”)公布《微生物学名词》以来,迄今为止已公布了与生命科学有关的12个分支学科的规范名词[1~10],使我国生命科学界长期以来存在的名词混乱、定名不准和用名不当状况有所改善,在统一生命科学名词方面取得了明显效果。但是目前生命科学各学科之间的“一义多词”问题仍然比较严重。21世纪是生命科学的世纪,对生命科学名词的统一和规范化提出了更迫切和更高的要求,“一义多词”的名词亟待统一。本文根据笔者近年来在编写《英汉-汉英生态学词汇》一书时所收集的部分资料,谈一些认识,供大家参考。一、一义多词现象举例生命科学是自然科学的基础学科,是历史悠久、分化和发展迅速的一门科学。有相当多的名词属于基本名词,对部分或全部分支学科具有普遍适用性。但是从已公布的各学科名词来看,对不少基本名词,在各学科之间却定名不一(见表1)。表1所列仅是与生态学关系比较大的一些名词。生命科学各学科间的一义多词问题由此可见一斑。二、产生一义多词问题的原因1.对概念的内涵理解有明显分歧生命科学的词汇多数是从国外翻译过来的,而对若干概念,国外的认识也不一致,这便成为译名混乱的根源之一。比如Lincoln等人认为“acclimatization”是生物对变化的自然环境条件的渐变可逆性调节。与此相对应,他们认为“accliamtion”是生物对人为或实验环境因子的渐变可逆性调节[14]。Mackenzie等人[15]和Resinger等人[16]的观点与他们基本相同。但是Collin[17]和Ricklefs[18]把“acclimatization”与“accliamtion”视为同义词,认为是生物对环境变化的形态或生理可逆性变化反应。难怪“acclimatization”的译名有“驯化”[3,12]、“[风土] 驯化”[9]和“气候适应”[12],等等。同样道理,“allelopathy”的译名有“异种克生[现象]”[1]、“化感作用”[6,11,13]和“异种化感”[9],等等。笔者认为“异种克生”仅表明了某种生物的代谢分泌物对其他生物的不利作用,而“化感作用” 和“异种化感”则表明了某种生物的代谢分泌物对其他生物的有利或不利作用。但是“异种化感”仅包含种间作用,而“化感作用”则既包含了种间作用,又包含了种内作用。土壤学名词(定义版)(1998)[13]把“allelopathy”定名为“化感作用”,认为它是指“植物分泌某些化学物质对其他植物的生长产生的抑制或促进作用”。虽然该定名和定义均比较好,但是同其他定义[14,16,19]一样,该定义的信息有严重欠缺,没有指明是种间“其他植物”,还是种内“其他植物”,或二者均包括在内。笔者认为可将“化感作用”定义为“植物分泌的化学物质对异种植物或同种其他植物产生的抑制或促进作用”。生命科学概念体系是一个逐渐形成和发展的动态体系。对生命科学基本概念的定名应当反映生命科学的最新发展水平。名词的内涵变了,名词本身也应相应变化。比如“allelopathy”最初是指植物通过释放化学物质对其他植物发芽或生长的抑制作用,现在认识到它是植物的一种普遍的抗竞争机制[19],包括种间竞争性化感作用和种内竞争性化感作用[15],既有不利作用,又有有利作用[20]。对“allelopathy”内涵的全面认识,是给其定名和定义的必要前提。2.对概念的措辞不同即对概念的内涵理解比较一致,但在遣词用字上却存在差异。如“被动运输”与“被动转运”,“单态”与“单态现象”,“异域种”与“异地种”,等等。从表1可以看出,生命科学各学科的一义多词现象多属于此类。汉语文化博大精深,可供表意的词汇丰富、数量庞大、涵义细致。虽然为择优定名提供了较大的选择空间,但另一方面也成了出现一义多词的另一原因。由于对外来词汇没有一个统一的翻译标准,加上个人遣词用字习惯的不同,以及对概念理解的细微差异,便造成了一个概念多种名称。3.对“规范名词”和“不推荐用名”的认识不同在已公布的生命科学各学科名词中均有一些“不推荐用名”。在这些“不推荐用名”中,有的名词在这一学科为“不推荐用名”,而在另一分支学科却为“规范名词”。如“生命带”和“广布种”在《植物学名词》中均为不推荐用名[9],而在《动物学名词》中却为规范名词[6],等等。4.各学科之间的定名协调工作较差在近年来的名词审定工作中,生命科学各学科分别进行,且历时较长,客观上给定名协调工作带来一定困难。但是协调工作不力亦是造成一义多词问题不可忽视的原因之一。从表1可以看出,大多数概念的一义多词,不是认识上存在本质区别,只是措辞不同而已。所以加强各学科之间的协调工作,对此类问题还是比较容易解决的。三、对策生命科学名词的规范化是一项长期而艰巨的任务。多数分支学科已完成第一批名词审定,有的学科正在进行名词审定;已完成第一批审定工作数年的一些学科,不久将要进行增补、修订和补充定义的工作。为了进一步做好生命科学名词规范化工作,首先应鼓励和加强对有关概念的研究,注意学科间的相互学习和借鉴,以提高和统一认识,为择优定名和名词定义打好基础。这是其一。其二,要加强各学科之间,以及与交叉学科之间的定名协调工作。建议成立一个生命科学名词审定协调机构,管理和推动生命科学各学科以及与交叉学科之间的名词审定、修订和定义的协调工作。* 王孟本研究员是生态学名词审定委员会委员。  相似文献   

9.
等高线是测绘学科中最基本的名词之一。名正义符,清晰易懂,本来就不是什么复杂问题。可是其分类名词,多年来得不到统一,而且相当混乱。现将有关文献中所采用的分类名词,举数例如下,供参考和讨论。1.《测绘学名词》[1](以下简称《名词》)中有词条:“首曲线 intermediate contour”“计曲线 index contour”“间曲线 half interval contour”“助曲线 extra contour 又称辅助等高线”2.《地图学术语》[2](以下简称《术语》)中所列词条与上述《名词》中的相同以外,增加了所谓“同义词”,分别为基本等高线、加粗等高线、半距等高线和辅助等高线。3.《1:500 1:1000 1:2000地形图图式》[3]中,“等高线a.首曲线 b.计曲线 c.间曲线”,与《名词》中的相比,没有“助曲线”;也没有《术语》中的“同义词”。4.《省、地、县地图图式》[4]中,“等高线分基本等高线、加粗等高线、辅助等高线”。与上述《1:500 1:1000 1:2000地形图图式》中的分类名词完全不同,而与《术语》中的相比,没有“半距等高线”。5.《测量学》[5]中,等高线的分类:①基本等高线(又称首曲线)②加粗等高线(又称计曲线)③半距等高线(又称间曲线)。与《术语》中所用的名词相比,主次相反,且没有助曲线这个名词。6.《测量学》[6](土建类专业用)中只有首曲线、计曲线和间曲线,也没有助曲线。7.《普通地图编制》[7]中,等高线的分类名词与《术语》中的相同,只是把“同义词”变成了“又称”。从以上情况来看,等高线的分类名词众说纷纭,没有共同语言,形成这样的混乱局面,令人无所适从。还有个别词条,如《名词》和《术语》中的“助曲线extra contour又称辅助等高线”。其中的英文词和“又称辅助等高线”都不正确。再说,助曲线有“又称”,难道首曲线等三个名词就没有“又称”?还应着重指出的是,上述两本《测量学》教材,连助曲线这个名词都没有。以上文献中出现的两组等高线分类名词,都是从国外传入我国的,已混用多年,分不清哪一组是规范名。“首曲线”这一组名词是早年从日本传入我国,沿用至今,直接引用日文中用汉字书写的这组名词不够通顺,对首曲线而言,是按规定的等高距测绘的,图中最主要的等高线。计曲线不过是将每第五条或第四条首曲线的线划加粗些,为的是便于计数。而间曲线和助曲线只是首曲线还不足以显示局部地貌特征时才测绘,起到辅助作用,并不是图中非要不可的,视地面坡度变化情况而定,现从有关文献[16]中获悉,日本在上世纪80年代,就对这些名词作了如下的修改:“主曲线 intermediate contour……[古]首曲线”“计曲线 index contour,principal contour……”“补助曲线 auxiliary contour supplementary contour……[古]间曲线,助曲线”。这里除了首曲线早就改称“主曲线”[15]外,淘汰了“间曲线”和“助曲线”这两个词不达意的名词,将这些用二分之一,四分之一,以至八分之一[16]基本等高距测绘的等高线,根据其性能统称补助曲线,或辅助等高线,也有称“补充等高线”[8]的。辅助等高线是国际上通用的一个术语,其涵义在不同外文文献中的表述也是一致的,如:“Supplementary contour or one-fourth the basic interval are drawn and shown in dashed lines.”[17]“auxiliary contour(supplementary contour).An extra contour introduced,in areas where contours at the standard interval are too far apart on a map,to show the relief adequately.”[19]“辅助等高线用虚线来表示。”[14]在国内的教材中,也有“加绘补充等高线(间曲线、助曲线)是局部缩小等高距的方法。为了区别于基本等高线,补充等高线大多采用不同式样的虚线。”[8]可是《名词》、《术语》等文献中,把辅助等高线与助曲线混为一谈,造成混乱。要达到测绘学名词规范统一的目的,测绘学名词审定委员会肩负着不可推卸的使命。希望提高透明度,集思广益。增加责任心,多查考外文资料,注意与国际接轨,问题就不难解决。至于“基本等高线”“加粗等高线”和“半距等高线”这一组分类名词是上世纪50年代从俄文ОСНОВНАЯ ГОРИЗОНТАЛЬ,УТОЛЩЕННАЯ ГОРИЗОНТАЛЬ和ПОЛУГОРИЗОНТАЛЬ翻译过来的,还有辅助等高线(ВСПОМОГАТЕЛЬНАЯ ГОРИЗОНТАЛЬ,ДОПОЛНИТЕЛЬНАЯ ГОРИЗОНТАЛЬ)乃是泛指不按基本等高距测绘的,而是用虚线描绘的等高线,显然这一组名词要比原有“首曲线”那组分类名词,通顺些。在美国地质测量局(U.S.Geological Survey)的地形图图式中,等高线也是分intermediate contour,index contour和supplementary contour三种。[13]综合以上所述,认为可用基本等高线,加粗等高线和辅助等高线作为分类名词的规范词,而以主曲线、计曲线和辅助曲线作为目前允许使用的非规范词,规范名词的英文对应词就可用上面intermediate contour等三个惯用词,得以与国际上的名词概念接轨,有利于交流。此外,对前面提到助曲线所附的英文词问题,extra contour[14]不是术语,英文对应词也只能根据其内涵译quarter interval contour[10],如同间曲线译half interval contour[10]一样,即使不用间曲线和助曲线这两个过时的名词了,但有时还会分别提到这两种辅助等高线,在德文和俄文书中也有这样的提法,分别为Halbhhenlinie,viertelhhenlinie和ПОЛУГОРИЗОНТАЛЬ,ЧЕТВЕРТЬ ГОРИЗОНТАЛЬ。前面提到等高线分类名词的混乱,而分类名词的英文对应词更加混乱,有待澄清,列举如下:index contour计曲线,误认为首曲线;[9,12]intermediate contour首曲线,误认为计曲线;[9,10,12]auxiliary contour辅助曲线,误认为间曲线[11],还有误认为助曲线[9]的;supplementary contour辅助等高线,误认为间曲线[11];前面已提到的;extra contour并非术语,误认为助曲线[1,2,11]。此外,应着重指出的是,2002年公布的《地理信息系统名词》中,有关等高线分类名词的词条,就只有“计曲线index contour”和“间曲线intermediate contour line”,连首曲线和助曲线都没有。这里间曲线的英文对应词也不正确;还有前者称contour,后者称contour line也不恰当,两者不应并立。前者是指“地面上高程相同的点,连接起来所形成想象的闭合曲线,称contour,按它们的正射投影描绘到地形图上,就称之为contour line。”[20]也可不必考虑这样的区分,但用词必须前后一致。从以上情况看来,未能与1990年和2002年公布的《测绘学名词》协调统一,产生的影响,不言而喻。希望再版时作适当修改。以上所提是否有当,恳请批评指正。  相似文献   

10.
古植物学研究生活在地质历史时期的植物,这些植物以化石标本或者植物遗存的形式保存在沉积地层中。古植物学属于连接地质学和植物学的交叉学科,其名词既具有地学色彩,又具有生物学内涵。本文分析了古植物学名词的构成、来源,以及与相关学科名词的内在关联。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号