首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Syntrophins are a family of cytoplasmic membrane-associated adaptor proteins, characterized by the presence of a unique domain organization comprised of a C-terminal syntrophin unique (SU) domain and an N-terminal pleckstrin homology (PH) domain that is split by insertion of a PDZ domain. Syntrophins have been recognized as an important component of many signaling events, and they seem to function more like the cell’s own personal ‘Santa Claus’ that serves to ‘gift’ various signaling complexes with precise proteins that they ‘wish for’, and at the same time care enough for the spatial, temporal control of these signaling events, maintaining overall smooth functioning and general happiness of the cell. Syntrophins not only associate various ion channels and signaling proteins to the dystrophin-associated protein complex (DAPC), via a direct interaction with dystrophin protein but also serve as a link between the extracellular matrix and the intracellular downstream targets and cell cytoskeleton by interacting with F-actin. They play an important role in regulating the postsynaptic signal transduction, sarcolemmal localization of nNOS, EphA4 signaling at the neuromuscular junction, and G-protein mediated signaling. In our previous work, we reported a differential expression pattern of alpha-1-syntrophin (SNTA1) protein in esophageal and breast carcinomas. Implicated in several other pathologies, like cardiac dys-functioning, muscular dystrophies, diabetes, etc., these proteins provide a lot of scope for further studies. The present review focuses on the role of syntrophins in membrane targeting and regulation of cellular proteins, while highlighting their relevance in possible development and/or progression of pathologies including cancer which we have recently demonstrated.  相似文献   

2.
Caveolin proteins physically interact with and compartmentalize membrane-localized signaling proteins to facilitate high-fidelity intracellular signaling. Though primarily studied outside the nervous system, recent investigations have revealed that caveolin proteins are key modulators of a variety of neuronal intracellular signaling pathways. Through both protein aggregation and segregation, caveolin proteins can exert positive and negative influences on intracellular signaling. This review will detail recent findings regarding caveolin function in the brain.  相似文献   

3.
Kank proteins: structure, functions and diseases   总被引:1,自引:1,他引:0  
The Kank family of proteins, Kank1–Kank4, are characterized by their unique structure, coiled-coil motifs in the N-terminal region, and ankyrin-repeats in the C-terminal region, with an additional motif, the KN motif, at the N-terminus. Kank1 was obtained by positional cloning of a tumor suppressor gene in renal cell carcinoma, while the other members were found by homology search. The family is involved in the regulation of actin polymerization and cell motility through signaling pathways containing PI3K/Akt and/or unidentified modulators/effectors. Their relationship to diseases such as cancer, and to neuronal and developmental disorders, will be an important subject of future study.  相似文献   

4.
Role of Sam68 as an adaptor protein in signal transduction   总被引:3,自引:0,他引:3  
Sam68, the substrate of Src in mitosis, belongs to the family of RNA binding proteins. Sam68 contains consensus sequences to interact with other proteins via specific domains. Thus, Sam68 has various proline-rich sequences to interact with SH3 domain-containing proteins. Moreover, Sam68 also has a C-terminal domain rich in tyrosine residues that is a substrate for tyrosine kinases. Tyrosine phosphorylation of Sam68 promotes its interaction with SH2 containing proteins. The association of Sam68 with SH3 domain-containing proteins, and its tyrosine phosphorylation may negatively regulate its RNA binding activity. The presence of these consensus sequences to interact with different domains allows this protein to participate in signal transduction pathways triggered by tyrosine kinases. Thus, Sam68 participates in the signaling of T cell receptors, leptin and insulin receptors. In these systems Sam68 is tyrosine phosphorylated and recruited to specific signaling complexes. The participation of Sam68 in signaling suggests that it may function as an adaptor molecule, working as a dock to recruit other signaling molecules. Finally, the connection between this role of Sam68 in protein-protein interaction with RNA binding activity may connect signal transduction of tyrosine kinases with the regulation of RNA metabolism.Received 16 July 2004; received after revision 12 August 2004; accepted 18 August 2004  相似文献   

5.
Cerebral cavernous malformations (CCM) are neurovascular dysplasias that result in mulberry-shaped lesions predominantly located in brain and spinal tissues. Mutations in three genes are associated with CCM. These genes encode for the proteins KRIT1/CCM1 (krev interaction trapped 1/cerebral cavernous malformations 1), cerebral cavernous malformations 2, osmosensing scaffold for MEKK3 (CCM2/malcavernin/OSM), and cerebral cavernous malformations 3/programmed cell death 10 (CCM3/PDCD10). There have been many significant recent advances in our understanding of the structure and function of these proteins, as well as in their roles in cellular signaling. Here, we provide an update on the current knowledge of the structure of the CCM proteins and their functions within cellular signaling, particularly in cellular adhesion complexes and signaling cascades. We go on to discuss subcellular localization of the CCM proteins, the formation and regulation of the CCM complex signaling platform, and current progress towards targeted therapy for CCM disease. Recent structural studies have begun to shed new light on CCM protein function, and we focus here on how these studies have helped inform the current understanding of these roles and how they may aid future studies into both CCM-related biology and disease mechanisms.  相似文献   

6.
Proteins are typically categorized into protein families based on their domain organization. Yet, evolutionarily unrelated proteins can also be grouped together according to their common functional roles. Sequestering proteins constitute one such functional class, acting as macromolecular buffers and serving as an intracellular reservoir ready to release large quantities of bound proteins or other molecules upon appropriate stimulation. Another functional protein class comprises effector proteins, which constitute essential components of many intracellular signal transduction pathways. For instance, effectors of small GTP-hydrolases are activated upon binding a GTP-bound GTPase and thereupon participate in downstream interactions. Here we describe a member of the IQGAP family of scaffolding proteins, DGAP1 from Dictyostelium, which unifies the roles of an effector and a sequestrator in regard to the small GTPase Rac1. Unlike classical effectors, which bind their activators transiently leading to short-lived signaling complexes, interaction between DGAP1 and Rac1-GTP is stable and induces formation of a complex with actin-bundling proteins cortexillins at the back end of the cell. An oppositely localized Rac1 effector, the Scar/WAVE complex, promotes actin polymerization at the cell front. Competition between DGAP1 and Scar/WAVE for the common activator Rac1-GTP might provide the basis for the oscillatory re-polarization typically seen in randomly migrating Dictyostelium cells. We discuss the consequences of the dual roles exerted by DGAP1 and Rac1 in the regulation of cell motility and polarity, and propose that similar signaling mechanisms may be of general importance in regulating spatiotemporal dynamics of the actin cytoskeleton by small GTPases.  相似文献   

7.
Primary cilia are nearly ubiquitous cellular appendages that provide important sensory and signaling functions. Ciliary dysfunction underlies numerous human diseases, collectively termed ciliopathies. Primary cilia have distinct functions on different cell types and these functions are defined by the signaling proteins that localize to the ciliary membrane. Neurons throughout the mammalian brain possess primary cilia upon which certain G protein-coupled receptors localize. Yet, the precise signaling proteins present on the vast majority of neuronal cilia are unknown. Here, we report that dopamine receptor 1 (D1) localizes to cilia on mouse central neurons, thereby implicating neuronal cilia in dopamine signaling. Interestingly, ciliary localization of D1 is dynamic, and the receptor rapidly translocates to and from cilia in response to environmental cues. Notably, the translocation of D1 from cilia requires proteins mutated in the ciliopathy Bardet-Biedl syndrome (BBS), and we find that one of the BBS proteins, Bbs5, specifically interacts with D1.  相似文献   

8.
Bile acids and bile alcohols in the form of their conjugates are amphipathic end products of cholesterol metabolism with multiple physiological functions. The great variety of bile acids and bile alcohols that are present in vertebrates are tabulated. Bile salts have an enterohepatic circulation resulting from efficient vectorial transport of bile salts through the hepatocyte and the ileal enterocyte; such transport leads to the accumulation of a pool of bile salts that cycles between the liver and intestine. Bile salt anions promote lipid absorption, enhance tryptic cleavage of dietary proteins, and have antimicrobial effects. Bile salts are signaling molecules, activating nuclear receptors in the hepatocyte and ileal enterocyte, as well as an increasing number of G-protein coupled receptors. Bile acids are used therapeutically to correct deficiency states, to decrease the cholesterol saturation of bile, or to decrease the cytotoxicity of retained bile acids in cholestatic liver disease.  相似文献   

9.
Novel regulation and function of Src tyrosine kinase   总被引:4,自引:0,他引:4  
Src tyrosine kinase is a critical signal transducer that modulates a wide variety of cellular functions. Misregulation of Src leads to cell transformation and cancer. Heterotrimeric guanine-nucleotide-binding proteins (G proteins) are another group of signaling molecules that transduce signals from cell-surface receptors to generate physiological responses. Recently, it was discovered that Gαs and Gαi could directly stimulate Src family tyrosine kinase activity. This novel regulation of Src tyrosine kinase by G proteins provides insights into the adenylyl cyclase-independent signaling mechanisms involved in ligand-induced receptor desensitization, internalization and other physiological processes. Received 17 August 2001; received after revision 22 October 2001; accepted 24 October 2001  相似文献   

10.
The modular nature of apoptotic signaling proteins   总被引:9,自引:0,他引:9  
Apoptosis, initiated by a variety of stimuli, is a physiological process that engages a well-ordered signaling cascade, eventually leading to the controlled death of the cell. The most extensively studied apoptotic stimulus is the binding of death receptors related to CD95 (Fas/Apo1) by their respective ligands. During the last years, a considerable number of proteins have been identified which act together in the receptor-proximal part of the signaling pathway. Based on localized regions of sequence similarity, it has been predicted that these proteins consist of several independently folding domains. In several cases these predictions have been confirmed by structural studies; in other cases they are at least supported by experimental data. This review focuses on the three most widespread domain families found in the apoptotic signaling proteins: the death domain, the death effector domain and the caspase recruitment domain. The recently discovered analogies between these domains, both in structure and in function, have shed some light on the overall architecture of the pathway leading from death receptor ligation to the activation of caspases and eventually to the apoptotic phenotype. Received 8 October 1998; received after revision 8 January 1999; accepted 8 January 1999  相似文献   

11.
12.
Proteins of the developing enamel matrix include amelogenin, ameloblastin and enamelin. Of these three proteins amelogenin predominates. Protein-protein interactions are likely to occur at the ameloblast Tomes’ processes between membrane-bound proteins and secreted enamel matrix proteins. Such protein-protein interactions could be associated with cell signaling or endocytosis. CD63 and Lamp1 are ubiquitously expressed, are lysosomal integral membrane proteins, and localize to the plasma membrane. CD63 and Lamp1 interact with amelogenin in vitro. In this study our objective was to study the molecular events of intercellular trafficking of an exogenous source of amelogenin, and related this movement to the spatiotemporal expression of CD63 and Lamp1 using various cell lineages. Exogenously added amelogenin moves rapidly into the cell into established Lamp1-positive vesicles that subsequently localize to the perinuclear region. These data indicate a possible mechanism by which amelogenin, or degraded amelogenin peptides, are removed from the extracellular matrix during enamel formation and maturation. Received 27 September 2006; received after revision 24 November 2006; accepted 5 December 2006  相似文献   

13.
Growing evidence suggests that membrane microdomains enriched in cholesterol and sphingomyelin are sites for numerous cellular processes, including signaling, vesicular transport, interaction with pathogens, and viral infection, etc. Recently some members of the annexin family of conserved calcium and membrane-binding proteins have been recognized as cholesterol-interacting molecules and suggested to play a role in the formation, stabilization, and dynamics of membrane microdomains to affect membrane lateral organization and to attract other proteins and signaling molecules onto their territory. Furthermore, annexins were implicated in the interactions between cytosolic and membrane molecules, in the turnover and storage of cholesterol and in various signaling pathways. In this review, we focus on the mechanisms of interaction of annexins with lipid microdomains and the role of annexins in membrane microdomains dynamics including possible participation of the domain-associated forms of annexins in the etiology of human lysosomal storage disease called Niemann-Pick type C disease, related to the abnormal storage of cholesterol in the lysosome-like intracellular compartment. The involvement of annexins and cholesterol/sphingomyelin-enriched membrane microdomains in other pathologies including cardiac dysfunctions, neurodegenerative diseases, obesity, diabetes mellitus, and cancer is likely, but is not supported by substantial experimental observations, and therefore awaits further clarification.  相似文献   

14.
Noncollagenous, nonproteoglycan macromolecules of cartilage   总被引:4,自引:0,他引:4  
Extracellular matrix comprises approximately 90% of cartilage, with collagens and proteoglycans making up the bulk of the tissue. In recent years, several abundant cartilage proteins that are neither collagens nor proteoglycans have been characterized in detail. The putative roles of these proteins range from involvement in matrix organization or matrix-cell signaling (PRELP, chondroadherin, cartilage oligomeric protein and cartilage matrix protein) through to molecules that are likely to be involved with modulation of the chondrocyte phenotype (CD-RAP, CDMPs, chondromodulin and pleiotrophin). Other molecules, such as the cartilage-derived C-type lectin and cartilage intermediate layer protein have no role as yet. Due to the difficulties associated with experimentally manipulating a tissue that is 90% extracellular matrix in a manner that can be readily transferred to the whole organism, many of these molecules have been focused on by a surprisingly small number of researchers. This review focuses on newly discovered proteins and glycoproteins in cartilage, with a bias towards those that have structural roles or that are unique to cartilage. Received 7 January 1999; accepted 11 March 1999  相似文献   

15.
16.
Primary cilia are immotile organelles known for their roles in development and cell signaling. Defects in primary cilia result in a range of disorders named ciliopathies. Because this organelle can be found singularly on almost all cell types, its importance extends to most organ systems. As such, elucidating the importance of the primary cilium has attracted researchers from all biological disciplines. As the primary cilia field expands, caution is warranted in attributing biological defects solely to the function of this organelle, since many of these “ciliary” proteins are found at other sites in cells and likely have non-ciliary functions. Indeed, many, if not all, cilia proteins have locations and functions outside the primary cilium. Extraciliary functions are known to include cell cycle regulation, cytoskeletal regulation, and trafficking. Cilia proteins have been observed in the nucleus, at the Golgi apparatus, and even in immune synapses of T cells (interestingly, a non-ciliated cell). Given the abundance of extraciliary sites and functions, it can be difficult to definitively attribute an observed phenotype solely to defective cilia rather than to some defective extraciliary function or a combination of both. Thus, extraciliary sites and functions of cilia proteins need to be considered, as well as experimentally determined. Through such consideration, we will understand the true role of the primary cilium in disease as compared to other cellular processes’ influences in mediating disease (or through a combination of both). Here, we review a compilation of known extraciliary sites and functions of “cilia” proteins as a means to demonstrate the potential non-ciliary roles for these proteins.  相似文献   

17.
Translation of nutrient stimuli through intracellular signaling is important for adaptation and regulation of metabolic processes, while deregulation by either genetic or environmental factors predisposes towards the development of metabolic disorders. Besides providing energy, fatty acids act as prominent signaling molecules by altering cell membrane structures, affecting the lipid modification status of proteins, and by modulating ligand-activated nuclear receptor activity. Given their highly hydrophobic nature, fatty acids in the aqueous intracellular compartment are bound to small intracellular lipid binding proteins which function as intracellular carriers of these hydrophobic components. This review describes recent advances in identifying intracellular pathways for cytosolic fatty acid signaling through ligand activated receptors by means of small intracellular lipid binding proteins. The mechanism behind intracellular fatty acid transport and subsequent nuclear receptor activation is an emerging concept, and advances in understanding this process provide new potential therapeutic targets towards the treatment of metabolic disorders.  相似文献   

18.
Chemokines are small, secreted proteins that bind to the chemokine receptor subfamily of class A G protein-coupled receptors. Collectively, these receptor-ligand pairs are responsible for diverse physiological responses including immune cell trafficking, development and mitogenic signaling, both in the context of homeostasis and disease. However, chemokines and their receptors are not isolated entities, but instead function in complex networks involving homo- and heterodimer formation as well as crosstalk with other signaling complexes. Here the functional consequences of chemokine receptor activity, from the perspective of both direct physical associations with other receptors and indirect crosstalk with orthogonal signaling pathways, are reviewed. Modulation of chemokine receptor activity through these mechanisms has significant implications in physiological and pathological processes, as well as drug discovery and drug efficacy. The integration of signals downstream of chemokine and other receptors will be key to understanding how cells fine-tune their response to a variety of stimuli, including therapeutics. Received 19 October 2008; received after revision 7 November 2008; accepted 11 November 2008 C. L. Salanga, M. O’Hayre: These authors contributed equally.  相似文献   

19.
Decoding the Hedgehog signal in animal development   总被引:4,自引:0,他引:4  
The Hedgehog (Hh) family of secreted proteins plays essential roles in a myriad of developmental processes via a complex signaling cascade conserved in species ranging from insects to mammals. In many developmental contexts, Hh acts as long-range morphogen to control distinct cellular outcomes as a function of its concentration. Here we review the current understanding of the Hh signaling mechanisms that govern the establishment of the Hh gradient and the transduction of the Hh signal with an emphasis on the intracellular signaling cascade from the receptor to the nuclear effector. We discuss how graded Hh signals are transduced to govern distinct developmental outcomes. Received 28 October 2005; received after revision 6 February 2006; accepted 15 February 2006  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号