共查询到15条相似文献,搜索用时 62 毫秒
1.
关于不定方程 x2+4n=y3 总被引:1,自引:0,他引:1
黄勇庆 《四川理工学院学报(自然科学版)》2007,20(1):26-27
利用代数数论的方法,证明了不定方程x2+4n=y3(其中n∈N,x≡1(mod2),x,y∈Z)仅有整数解(x,y,n)=(±11,5,1)。 相似文献
2.
邢静静 《重庆工商大学学报(自然科学版)》2014,(8):17-19
利用代数数论的方法,证明了不定方程x2+4n=y7,x≡0(mod 2),x,y,n∈Z仅有整数解(x,y,n)=(0,4m,7m),(±8·27m,2·4m,7m+3),(m∈N). 相似文献
3.
该文首先应用代数数论的方法证明了不定方程~$x{^2}+4{^n}=y{^9}$~在~$x\\equiv 1 \\pmod{2}$ 时无整数解, 再证明不定方程~$x{^2}+4{^n}=y{^9}$~在~$n \\in\\{6, 7, 8\\}$~ 时均无整数解, 进而证明不定方程~$x{^2}+4{^n}=y{^9}$~仅当~$n\\equiv 0 \\pmod{9}$~和~$n\\equiv 4 \\pmod{9}$ 时有整数解, 且当~$n=9m$~时, 其整数解为~$(x,y)=(0,4{^m})$; 当~$n=9m+4$~时, 其整数解为~$(x,y)=(\\pm16\\times2{^{9m}},2\\times4{^m}),$~ 这里的~$m$~为非负整数. 进一步, 根据~$k=5,9$ 的结论, 文章提出了一个关于不定方程~$x{^2}+4{^n}=y{^k}$ $(k$ 为奇数$)$ 的整数解的猜想, 以供后续研究. 相似文献
4.
蔡小群 《重庆工商大学学报(自然科学版)》2021,38(1):99-104
应用代数数论以及同余法等初等方法讨论不定方程x~2+4~n=y~(11)的整数解情况,证明了不定方程x~2+4~n=y~(11)在x为奇数,n≥1时无整数解;不定方程x~2+4~n=y~(11)在n∈{1,8,9,10}时均无整数解;不定方程x~2+4~n=y~(11)有整数解的充要条件是n≡0(mod 11)或n≡5(mod 11),且当n≡0(mod 11)时,其整数解为(x,y)=(0,4~m);当n≡5(mod 11)时,其整数解为(x,y)=(±2~(11m+5),22m+1),这里的m为非负整数,验证了k=11时猜想1成立。 相似文献
5.
赵开明 《四川理工学院学报(自然科学版)》2008,21(3)
文章利用代数数论方法证明了不定方程x~2+49~n=y~3 n∈N,x■7的整数解仅(x,y,n)=(±524,65,1)并且证明了x~2+(P~2)~n=y~3,p是素数的一般解. 相似文献
6.
关于不定方程x2+16=y13的解 总被引:2,自引:0,他引:2
张四保 《北华大学学报(自然科学版)》2009,10(4):307-309
利用代数数论的方法,证明了不定方程x2+16=y13无整数解. 相似文献
7.
丢番图方程是数论中一个重要组成部分,它不仅自身发展迅速,而且研究成果被广泛地应用于其他理学学科领域. 本文利用数论中同余的性质,研究丢番图方程x3 +4096=y3 的解的情况,用代数数论的方法,证明了该方程无整数解. 相似文献
8.
尚旭 《重庆工商大学学报(自然科学版)》2017,34(4):32-34
不定方程整数解的问题是数论方面的一个重要分支,利用代数数论和同余的方法讨论不定方程x~2+64=4y~n(x,y∈Z),当n=7,11时整数解的问题,并证明了不定方程x~2+64=4y~n(n=7,11)无整数解. 相似文献
9.
10.
唐维彬 《重庆工商大学学报(自然科学版)》2015,32(1):15-18
利用代数数论的方法,证明了不定方程x2+4n=y11,当n=3和n=4时无整数解,n=5时有整数解(x,y)=(±32,2). 相似文献
11.
12.
13.
14.
关于不定方程x(x+1)(x+2)(x+3)=13y(y+1)(y+2)(y+3) 总被引:1,自引:0,他引:1
主要运用Pell方程、递归数列、同余式及(非)平方剩余等一些初等的证明方法,证明了不定方程x(x+1)(x+2)·(x+3)=13y(y+1)(y+2)(y+3)无正整数解.在证明该结论的过程中,对不定方程进行变形和整理,将其化为Pell方程形式.根据得到的Pell方程整数解的情况,从而得到6类整数解.根据原不定方程的情况舍去了两类,剩余4类整数解.本文逐一对每一类整数解用同余式及平方剩余的证明方法进行讨论和证明,最后得到原不定方程无正整数解的结论.根据本文的结论也能得到这个不定方程的全部整数解,它们都为其平凡解,由于比较简单,故文中没有再给出.同时本文证明了不定方程(x2+ 3x+ 1)2-13y2=-12仅有整数解(x,±y)=(0,1),(-3,1),(-2,1),(-1,1),(-14,43),(11,43).本文进一步完善了此类不定方程的正整数解的研究. 相似文献
15.
段辉明 《重庆工商大学学报(自然科学版)》2005,22(2):191-193
利用两种初等的方法,即对方程取某个正整数M>1为模来制造矛盾的同余法和递归序列法,证明了不定方程x3 -1=19y2 仅有整数解(x,y)=(1,0),从而进一步的证明了方程x2 -19y2 =-13无整数解;方程x2 -3r2 =-3仅有整数解(1.0). 相似文献