首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
If bosonic particles are cooled down below the temperature of quantum degeneracy, they can spontaneously form a coherent state in which individual matter waves synchronize and combine. Spontaneous coherence of matter waves forms the basis of a number of fundamental phenomena in physics, including superconductivity, superfluidity and Bose-Einstein condensation. Spontaneous coherence is the key characteristic of condensation in momentum space. Excitons--bound pairs of electrons and holes--form a model system to explore the quantum physics of cold bosons in solids. Cold exciton gases can be realized in a system of indirect excitons, which can cool down below the temperature of quantum degeneracy owing to their long lifetimes. Here we report measurements of spontaneous coherence in a gas of indirect excitons. We found that spontaneous coherence of excitons emerges in the region of the macroscopically ordered exciton state and in the region of vortices of linear polarization. The coherence length in these regions is much larger than in a classical gas, indicating a coherent state with a much narrower than classical exciton distribution in momentum space, characteristic of a condensate. A pattern of extended spontaneous coherence is correlated with a pattern of spontaneous polarization, revealing the properties of a multicomponent coherent state. We also observed phase singularities in the coherent exciton gas. All these phenomena emerge when the exciton gas is cooled below a few kelvin.  相似文献   

2.
从量子理论的基本原理和公式推导出了原来由半经典半量子理论推导出的Pang’s孤立子所满足的方程,使这个描述生物能量和生物信息传输的理论,建立在可靠的量子理论基础上,并得出了与原来特性有所不同的这种孤立子的一些特性。  相似文献   

3.
本文用固体量子场论方法,推导出计及非线性相互作用的电子-声子相互作用系统的哈密顿量的普遍表达式,并给出三种类型极化子哈密顿量的具体表达式.结果表明:纵声子和横声子均对非线性效应有影响.  相似文献   

4.
综述了磁单极在经典电磁理论和量子理论中的可能存在形式,讨论了为寻找磁单极所作的一些 实验,介绍了磁单极并入量理论可 到的焉些困难,以为基础,诬蔑科对磁单极的存在提出否定说明。  相似文献   

5.
尽管经典理论比起量子理论来,有很大的不足,但是它仍然是一个自洽的理论,并且它是量子理论的基础,对于量子理论有很大的指导意义。本文分析研究了经典场论的基本理论问题,即应用经典场变分原理处理电磁能量-动量张量问题。  相似文献   

6.
Sun D  Riley AE  Cadby AJ  Richman EK  Korlann SD  Tolbert SH 《Nature》2006,441(7097):1126-1130
Surfactant templating is a method that has successfully been used to produce nanoporous inorganic structures from a wide range of oxide-based material. Co-assembly of inorganic precursor molecules with amphiphilic organic molecules is followed first by inorganic condensation to produce rigid amorphous frameworks and then, by template removal, to produce mesoporous solids. A range of periodic surfactant/semiconductor and surfactant/metal composites have also been produced by similar methods, but for virtually all the non-oxide semiconducting phases, the surfactant unfortunately cannot be removed to generate porous materials. Here we show that it is possible to use surfactant-driven self-organization of soluble Zintl clusters to produce periodic, nanoporous versions of classic semiconductors such as amorphous Ge or Ge/Si alloys. Specifically, we use derivatives of the anionic Ge9(4-) cluster, a compound whose use in the synthesis of nanoscale materials is established. Moreover, because of the small size, high surface area, and flexible chemistry of these materials, we can tune optical properties in these nanoporous semiconductors through quantum confinement, by adsorption of surface species, or by altering the elemental composition of the inorganic framework. Because the semiconductor surface is exposed and accessible in these materials, they have the potential to interact with a range of species in ways that could eventually lead to new types of sensors or other novel nanostructured devices.  相似文献   

7.
Horodecki M  Oppenheim J  Winter A 《Nature》2005,436(7051):673-676
Information--be it classical or quantum--is measured by the amount of communication needed to convey it. In the classical case, if the receiver has some prior information about the messages being conveyed, less communication is needed. Here we explore the concept of prior quantum information: given an unknown quantum state distributed over two systems, we determine how much quantum communication is needed to transfer the full state to one system. This communication measures the partial information one system needs, conditioned on its prior information. We find that it is given by the conditional entropy--a quantity that was known previously, but lacked an operational meaning. In the classical case, partial information must always be positive, but we find that in the quantum world this physical quantity can be negative. If the partial information is positive, its sender needs to communicate this number of quantum bits to the receiver; if it is negative, then sender and receiver instead gain the corresponding potential for future quantum communication. We introduce a protocol that we term 'quantum state merging' which optimally transfers partial information. We show how it enables a systematic understanding of quantum network theory, and discuss several important applications including distributed compression, noiseless coding with side information, multiple access channels and assisted entanglement distillation.  相似文献   

8.
Symmetry-breaking interactions have a crucial role in many areas of physics, ranging from classical ferrofluids to superfluid (3)He and d-wave superconductivity. For superfluid quantum gases, a variety of new physical phenomena arising from the symmetry-breaking interaction between electric or magnetic dipoles are expected. Novel quantum phases in optical lattices, such as chequerboard or supersolid phases, are predicted for dipolar bosons. Dipolar interactions can also enrich considerably the physics of quantum gases with internal degrees of freedom. Arrays of dipolar particles could be used for efficient quantum information processing. Here we report the realization of a chromium Bose-Einstein condensate with strong dipolar interactions. By using a Feshbach resonance, we reduce the usual isotropic contact interaction, such that the anisotropic magnetic dipole-dipole interaction between 52Cr atoms becomes comparable in strength. This induces a change of the aspect ratio of the atom cloud; for strong dipolar interactions, the inversion of ellipticity during expansion (the usual 'smoking gun' evidence for a Bose-Einstein condensate) can be suppressed. These effects are accounted for by taking into account the dipolar interaction in the superfluid hydrodynamic equations governing the dynamics of the gas, in the same way as classical ferrofluids can be described by including dipolar terms in the classical hydrodynamic equations. Our results are a first step in the exploration of the unique properties of quantum ferrofluids.  相似文献   

9.
10.
研究表明:如果把作用量视为一个与力、能量和动量平权的物理量,那么经典牛顿力学、量子力学、相对论和狄拉克的相对论电子理论有了统一的数学基础. 由此推测“反物质”本质上是超光速物质的亚光速表象,并预言它们在引力场中是受到引力场的排斥的. 本文进一步讨论基于芬斯勒时空结构中的相对论的物理特征,特别指出爱因斯坦相对论中的“光锥”作为突变临界面的特殊性质,构成了以光速为相互作用传递速度的“作用力”的“吸引”和“排斥”表象间的相互转换.   相似文献   

11.
The realization of all-optical switching, modulating and computing devices is an important goal in modern optical technology. Nonlinear optical materials with large third-order nonlinear susceptibilities (chi(3)) are indispensable for such devices, because the magnitude of this quantity dominates the device performance. A key strategy in the development of new materials with large nonlinear susceptibilities is the exploration of quasi-one-dimensional systems, or 'quantum wires'--the quantum confinement of electron-hole motion in one-dimensional space can enhance chi(3). Two types of chemically synthesized quantum wires have been extensively studied: the band insulators of silicon polymers, and Peierls insulators of pi-conjugated polymers and platinum halides. In these systems, chi(3) values of 10(-12) to 10(-7) e.s.u. (electrostatic system of units) have been reported. Here we demonstrate an anomalous enhancement of the third-order nonlinear susceptibility in a different category of quantum wires: one-dimensional Mott insulators of 3d transition-metal oxides and halides. By analysing the electroreflectance spectra of these compounds, we measure chi(3) values in the range 10(-8) to 10(-5) e.s.u. The anomalous enhancement results from a large dipole moment between the lowest two excited states of these systems.  相似文献   

12.
半固态过共晶高铬铸铁的冲击及磨损性能研究   总被引:6,自引:0,他引:6  
通过倾斜冷却体法制备了组织中初生碳化物明显细化的半固态过共晶高铬铸铁,其冲击韧性值较常规过共晶高铬铸铁试样提高了大约1倍以上;以常规亚共晶高铬铸铁为标样进行三体磨料磨损试验,结果表明半固态过共晶高铬铸铁与常规过共晶高铬铸铁的相对耐磨性分别比亚共晶高铬铸铁提高了32%和49%.对半固态过共晶高铬铸铁试样的微观分析表明,组织中存在大量的缩松,这对于半固态高铬铸铁韧性、硬度及耐磨性的提高产生了不利的影响,减少或消除缩松对于进一步提高半固态过共晶高铬铸铁的性能具有重要意义.  相似文献   

13.
Babaev E  Sudbø A  Ashcroft NW 《Nature》2004,431(7009):666-668
Although hydrogen is the simplest of atoms, it does not form the simplest of solids or liquids. Quantum effects in these phases are considerable (a consequence of the light proton mass) and they have a demonstrable and often puzzling influence on many physical properties, including spatial order. To date, the structure of dense hydrogen remains experimentally elusive. Recent studies of the melting curve of hydrogen indicate that at high (but experimentally accessible) pressures, compressed hydrogen will adopt a liquid state, even at low temperatures. In reaching this phase, hydrogen is also projected to pass through an insulator-to-metal transition. This raises the possibility of new state of matter: a near ground-state liquid metal, and its ordered states in the quantum domain. Ordered quantum fluids are traditionally categorized as superconductors or superfluids; these respective systems feature dissipationless electrical currents or mass flow. Here we report a topological analysis of the projected phase of liquid metallic hydrogen, finding that it may represent a new type of ordered quantum fluid. Specifically, we show that liquid metallic hydrogen cannot be categorized exclusively as a superconductor or superfluid. We predict that, in the presence of a magnetic field, liquid metallic hydrogen will exhibit several phase transitions to ordered states, ranging from superconductors to superfluids.  相似文献   

14.
In the Bardeen-Cooper-Schrieffer theory of superconductivity, electrons form (Cooper) pairs through an interaction mediated by vibrations in the underlying crystal structure. Like lattice vibrations, antiferromagnetic fluctuations can also produce an attractive interaction creating Cooper pairs, though with spin and angular momentum properties different from those of conventional superconductors. Such interactions have been implicated for two disparate classes of materials--the copper oxides and a set of Ce- and U-based compounds. But because their transition temperatures differ by nearly two orders of magnitude, this raises the question of whether a common pairing mechanism applies. PuCoGa5 has a transition temperature intermediate between those classes and therefore may bridge these extremes. Here we report measurements of the nuclear spin-lattice relaxation rate and Knight shift in PuCoGa5, which demonstrate that it is an unconventional superconductor with properties as expected for antiferromagnetically mediated superconductivity. Scaling of the relaxation rates among all of these materials (a feature not exhibited by their Knight shifts) establishes antiferromagnetic fluctuations as a likely mechanism for their unconventional superconductivity and suggests that related classes of exotic superconductors may yet be discovered.  相似文献   

15.
First-order structural phase transitions are common in crystalline solids, whereas first-order liquid-liquid phase transitions (that is, transitions between two distinct liquid forms with different density and entropy) are exceedingly rare in pure substances. But recent theoretical and experimental studies have shown evidence for such a transition in several materials, including supercooled water and liquid carbon. Here we report an in situ X-ray diffraction observation of a liquid-liquid transition in phosphorus, involving an abrupt, pressure-induced structural change between two distinct liquid forms. In addition to a known form of liquid phosphorus--a molecular liquid comprising tetrahedral P4 molecules--we have found a polymeric form at pressures above 1 GPa. Changing the pressure results in a reversible transformation from the low-pressure molecular form into the high-pressure polymeric form. The transformation is sharp and rapid, occurring within a few minutes over a pressure range of less than 0.02 GPa. During the transformation, the two forms of liquid coexist. These features are strongly suggestive of a first-order liquid-liquid phase transition.  相似文献   

16.
尽管和经典理论一样,从非相对论量子力学到相对论量子场论的量子理论采用了定域描述的方法,但本质上,量子理论却是在定域描述外衣下的空间非定域理论.从著名的EPR佯谬发难,Bell不等式的提出,GHZ定理,Hardy定理到Cabello定理,长期以来围绕Bell-GHZ-Hardy-Cabello这条空间非定域性研究路线,涌现出大量的理论和实验工作,文献汗牛充栋.迄今实验结果总是支持量子理论,但远远没能揭示出量子理论空间非定域性的本质,也未能否定隐变量的存在.这种状况使这一热点问题仍然吸引着很多人的关注和思考.我们对这条研究路线作了全面而简要地总结,系统而明确地叙述了有关的思想、概念和定理,最后给出了对它的详细评论.  相似文献   

17.
In contrast to classical physics, quantum theory demands that not all properties can be simultaneously well defined; the Heisenberg uncertainty principle is a manifestation of this fact. Alternatives have been explored--notably theories relying on joint probability distributions or non-contextual hidden-variable models, in which the properties of a system are defined independently of their own measurement and any other measurements that are made. Various deep theoretical results imply that such theories are in conflict with quantum mechanics. Simpler cases demonstrating this conflict have been found and tested experimentally with pairs of quantum bits (qubits). Recently, an inequality satisfied by non-contextual hidden-variable models and violated by quantum mechanics for all states of two qubits was introduced and tested experimentally. A single three-state system (a qutrit) is the simplest system in which such a contradiction is possible; moreover, the contradiction cannot result from entanglement between subsystems, because such a three-state system is indivisible. Here we report an experiment with single photonic qutrits which provides evidence that no joint probability distribution describing the outcomes of all possible measurements--and, therefore, no non-contextual theory--can exist. Specifically, we observe a violation of the Bell-type inequality found by Klyachko, Can, Binicio?lu and Shumovsky. Our results illustrate a deep incompatibility between quantum mechanics and classical physics that cannot in any way result from entanglement.  相似文献   

18.
圈量子宇宙学中哈密顿约束的量子化有一定的任意性,因此需要检验圈量子宇宙学的一些重要性质,如量子反弹、有效描述等,是否与这种量子化任意性有关。文章考虑了引力联络的场强的量子化中产生的一种典型的任意性,构造了一个可供选择的哈密顿约束算符,并通过半经典分析证明了该算符有正确的经典极限,进而得到了含高阶量子修正的有效哈密顿约束。在这个与无质量标量场耦合的空间平坦的Friedmann宇宙学模型的有效理论中,经典大爆炸奇点被量子反弹所取代,并且量子引力效应极有可能使膨胀的宇宙塌缩回来。可见圈量子宇宙学的上述重要性质与这种量子化任意性无关。  相似文献   

19.
首先, 用光的量子波动理论给出一维光子晶体的量子传输矩阵、 量子色散关系、 量子透射率和反射率; 其次, 通过数值计算分别给出一维光子晶体的量子色散关系、 量子透射率和反射率曲线, 并与经典的色散关系、 透射率和反射率进行比较. 结果表明, 其计算结果一致. 该方法可用于进一步研究光子晶体的量子Zak相、 量子陈数和量子边缘态等量子拓扑性质.  相似文献   

20.
材料的塑脆断裂转变及机理一直以来都是材料和力学领域的研究热点.近百年来,针对晶体材料的塑脆行为,相继发展了一系列弹、塑性的起裂临界判据及塑脆表征参数.非晶合金作为近年来涌现的一类新型结构材料,因具有优异的力学性能,在国防、空天等领域显示出广阔的应用前景.然而,该材料变形局部化剪切带导致的室温低塑性极大地限制了其工程应用.因此,弄清非晶合金的塑脆断裂行为及转变条件显得尤为迫切.在传统理论的基础上,结合非晶合金固有的特性,目前已发展了塑脆转变的单参数和双参数控制理论.本文将对这些理论进行简要的回顾,进一步揭示这些控制参数的相互关联及非晶合金塑脆转变的实质.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号