首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
臭氧活性炭去除水中硫醇类致嗅物质的研究   总被引:1,自引:0,他引:1  
硫醇类物质是南方某江排洪时饮用水中嗅味的主要致嗅物质。以乙硫醇为典型致嗅物质,研究了臭氧活性炭对乙硫醇的去除特性。结果表明,臭氧活性炭对乙硫醇有很好的去除效果,其中臭氧氧化是去除乙硫醇的关键工艺,活性炭发挥的作用有限;去除乙硫醇嗅味的适宜臭氧接触时间是15min,当水质变化不大时,完全氧化水中乙硫醇所需要的有效臭氧投加量(m g/L)为乙硫醇初始浓度(μg/L)的0.04倍。当进水乙硫醇浓度大于100μg/L时,需要增加适宜的预氧化处理,与臭氧活性炭联用才能有效去除水中硫醇类致嗅物质产生的嗅味。  相似文献   

2.
以天津市某净水厂生产用原水和调节池进口原水为试验原水进行混凝和吸附试验,通过在不同工艺点投加粉末活性炭,考察不同吸附时间下相关水质参数的变化规律,选择适宜的去除原水嗅味的粉末活性炭投加点和投加量。试验结果表明,在加聚合氯化铝前投加粉末活性炭对生产用原水嗅味的吸附去除效果最好,调节池进口原水投加15 mg/L粉末活性炭搅拌5 min后静置2 h对嗅味的处理效果最好。  相似文献   

3.
高锰酸钾—粉末活性炭联用处理微污染运河水的研究   总被引:1,自引:0,他引:1  
通过静态试验考察高锰酸钾和粉末活性炭不同投加量和投加顺序,在两者联用时对京杭大运河常州段微污染水源水的强化处理效果。结果表明:当高锰酸钾投加量为2mg/L,在反应池入口处投加;粉末活性炭投加量为20mg/L,在快速混合处投加,对源水中有机物的去除效果最好,CODMn和UV254的去除率分别达到53%和84%,并且高锰酸钾和粉末活性炭具有强化混凝的作用。  相似文献   

4.
硫醇类物质是南方某江排洪时饮用水中嗅味的主要致嗅物质。以乙硫醇为典型致嗅物质,研究了臭氧活性炭对乙硫醇的去除特性。结果表明,臭氧活性炭对乙硫醇有很好的去除效果,其中臭氧氧化是去除乙硫醇的关键工艺,活性炭发挥的作用有限;去除乙硫醇嗅味的适宜臭氧接触时间是15 min,当水质变化不大时,完全氧化水中乙硫醇所需要的有效臭氧投加量(mg/L)为乙硫醇初始浓度(μg/L)的0.04倍。当进水乙硫醇浓度大于100μg/L时,需要增加适宜的预氧化处理,与臭氧活性炭联用才能有效去除水中硫醇类致嗅物质产生的嗅味。  相似文献   

5.
以中国北方典型低温微污染水源—白石水库为研究对象,采用烧杯静态试验,进行了高锰酸钾单独氧化及高锰酸钾与混凝剂联用处理微污染水源水的研究.试验结果表明:高锰酸钾与混凝剂混合投加对高锰酸盐指数(CODMn)和氨氮(NH3-N)去除效果明显,并起到良好的除浊作用.最佳运行条件为先投加高锰酸钾2.5 mg/L,氧化15 min后投加PAC30 mg/L、PAM3 mg/L.  相似文献   

6.
采用液液萃取与气相色谱-质谱联用技术研究二氧化氯、活性炭纤维及二氧化氯与活性炭纤维联用3种方法对2-MIB的去除效果,考察二氧化氯和活性炭纤维投加量、溶液pH和底物初始质量浓度对目标物去除效果的影响。研究结果表明:ClO2单独去除的最佳投加量为8 mg/L,pH7时效果较好。ACF最佳投加量和最佳pH分别为20 mg/L和6.14。2-MIB的去除率都随其初始质量浓度增大而降低。ACF与ClO2联用工艺中二者投加量分别为1 mg/L和14 mg/L时,2-MIB的去除率可达88.2%,比单独吸附去除效果提高4.6%,同时降低30%的ACF投加量,此外,联用工艺对于处理低质量浓度的2-MIB更为有效。ACF吸附2-MIB符合伪二级反应动力学模型,粒子内部扩散是吸附过程的主要控制步骤,吸附可能是个复杂的非均相固液反应。  相似文献   

7.
臭氧化-活性炭吸附镉的条件   总被引:2,自引:0,他引:2  
为改善活性炭对镉的吸附性,将臭氧化技术引入吸附过程,研究活性炭投加量、臭氧活化时间以及溶液质量浓度变化对活性炭吸附镉离子能力的影响。结果表明,对于初始镉离子质量浓度为10mg/L的吸附溶液,最佳臭氧化时间为15min、最佳吸附时间为1h、活性炭的最佳投加量为1.0g时,吸附后镉离子的质量浓度为0.54mg/L;对于镉离子初始质量浓度为15mg/L的吸附溶液,最佳臭氧化时间为30min、最佳吸附时间为1h、活性炭的最佳投加量为1.1g时,吸附后镉离子的质量浓度为0.56mg/L。实验证明,经臭氧活化后的活性炭的吸附能力明显增强,极大的改变了吸附结果。  相似文献   

8.
通过对含甲氰菊酯农药的模拟水样进行混凝活性炭吸附处理,分别考察了混凝剂种类、投加量、pH等因素对混凝效果的影响以及木质粉末活性炭投加量、吸附时间、pH等因素对吸附效果的影响。结果表明,对水样作常规混凝处理时,氯化铁的处理效果优于其他混凝剂,当氯化铁的投加量为20mg/L,pH为8时,甲氰菊酯去除率可达59.4%。对水样做活性炭吸附处理时,适宜pH范围为6~9,木质粉末活性炭最佳投加量为40mg/L,最佳吸附时间为70min,在最优吸附条件下,甲氰菊酯去除率可达81.6%。在最优混凝吸附条件下,氯化铁混凝协同木质粉末活性炭吸附去除甲氰菊酯的去除率均大于90%,对水中甲氰菊酯去除效果较好。  相似文献   

9.
生产性试验与小试和中试存在一定的差异。基于已有的超滤膜装置,通过不同的粉末活性炭投加量,比较了UV254、DOC、SUVA,确定了粉末活性炭的最佳投加量:2-3mg/L。同时,比较了投加粉末活性炭后,水中消毒副产物及其生成势的变化,结果表明粉末活性炭对消毒副产物前驱物有较好的去除作用。  相似文献   

10.
面临震后成都市沙河段微污染原水的水质情况,提供切实有效的应急处理措施,并为给水厂的粉末活性炭应急投加提供依据,通过烧杯试验确定了适宜的活性炭投加量和投炭点。结果表明,投加点在流程上越靠前越有利于活性炭吸附作用的充分发挥;活性炭与混凝剂的竞争吸附现象并不明显。活性炭的投量需根据不同水质情况通过试验确定,针对成都沙河段的原水水质,试验所确定的活性炭最佳投加量为10~15mg/L。  相似文献   

11.
目的 研究NDA99树脂对含邻氯苯胺的3,3’-二氯联苯胺生产废水的吸附与脱附效果.方法 Agilent1100高效液相色谱仪测定邻氯苯胺在不同条件吸附下的浓度;采用重铬酸钾法测定COD,寻求最佳工艺条件.结果 在常温条件下,树脂最佳吸附流速为3 BV/h,最佳吸附量为30BV/批,此条件下出水中COD<500 mg/L,邻氯苯胺含量<5 mg/L;在1 BV/h的脱附流速下,脱附温度为50℃,脱附剂选用1 BV 8% HCl+1 BV 4% HCl+3 BV H2O组合而成,脱附率可达98%.在最佳吸附—脱附条件下,连续进行10批次的吸附-脱附实验,吸附出水中COD为267~465mg/L,邻氯苯胺含量为2.13~4.85 mg/L,低于国标(GB8978-1996)中三级排放标准:CODCr<500 mg/L、邻氯苯胺<5.0 mg/L.结论 NDA99树脂对该废水吸附性能稳定,吸附效果良好,具有一定的实用价值.  相似文献   

12.
采用低温电炉法对传统高温膨胀制备膨胀石墨的方法进行优化,并对其在染料废水处理中的应用进行了研究。考察了氧化剂、插层剂和氧化次数对膨胀体积的影响,并使用SEM、XRD、FT-IR对样品进行外观形貌和结构表征。研究结果表明:使用高锰酸钾-磷酸-硝酸氧化插层体系一次氧化下并使用低温电炉法进行膨化的效果最好,制备出的膨胀石墨样品膨胀体积为390 m L/g,比表面积252 m2/g。在对活性黄模拟染料废水处理的实验中,考察了膨胀石墨用量、活性黄浓度和温度3个因素对于活性黄模拟染料废水吸附效果的影响,结果表明:对于质量浓度为250 mg/L的活性黄废水,膨胀石墨的最大吸附量可达到180 mg/g;当膨胀石墨添加量为2.0 g/L时处理效果最佳,去除率达到65%;而温度对于吸附过程影响较小。  相似文献   

13.
絮凝沉降-Fenton氧化-吸附法处理采油污水实验研究   总被引:1,自引:0,他引:1  
我国油田的采油污水绝大部分经处理后用于油田注水 ,但由于种种原因 ,还有一部分采油污水不能回注 .这部分水外排至环境中 ,对环境产生一定的影响 .本文以甘谷驿油矿采油污水为研究对象 ,采用絮凝沉降 -Fenton氧化 -吸附法对该采油污水进行外排处理实验研究 .考察了 pH值、H2 O2 投加量、Fe2 +投加量、氧化时间、吸附时间、活性炭加量对COD去除率的影响 .实验结果表明 ,最佳处理条件为絮凝剂选用聚合硫酸铁 ,沉降 30min ;pH为 3.0~ 4 .0 ,30 %双氧水加量为 8mL/L ,m (Fe2 +)∶m (H2 O)为 4 % ,氧化时间 12 0min ;活性炭加量 4 .0~ 5 .0 g/L ,吸附时间 12 0min .在这种处理条件下 ,可使污水含油量从 93.1mg/L降至 5mg/L以下 ,悬浮物含量从 172mg/L降至 10mg/L以下 ,CODCr值从 2 6 34mg/L降至 10 0mg/L以下 ,达到国家一级排放标准  相似文献   

14.
 硝基苯类污水具有难降解、毒性大、易扩散等特点,目前国内外开始对高浓度硝基苯污水的治理进行深入研究,但对微污染水却少有关注.常规给水处理技术无法处理硝基苯微污染水,长期饮用会对人体健康和生态环境产生严重影响.本文选用水不溶性β-环糊精聚合物为吸附剂,研究水不溶性β-环糊精聚合物的制备,考察其对含硝基苯微污染水的吸附作用,讨论固液比、pH等参数对吸附性能的影响,以及β-环糊精聚合物的再生性能.结果表明,每100mL溶液中加入100mg β-环糊精聚合物为最适固液比;聚合物对200μg/L、500μg/L、1mg/L、2mg/L的硝基苯溶液的吸附效率可达到80%以上;最佳吸附时间为2h;环境pH对吸附效率无太大影响;研究选择了乙醇为最佳再生剂,经连续再生4次后,聚合物吸附效率都维持在80%以上.  相似文献   

15.
采用固定化WAS吸附剂,净化Pb(Ⅱ)和Hg(Ⅱ)污染水体影响,结果表明:该吸附剂吸附2种重金属离子时呈现出不同的规律,吸附Pb(Ⅱ)的最佳条件为在25℃,200 mL,质量浓度为99.23 mg/L,pH值为5,WAS与固化剂的包埋比例(质量比)为1∶5,振荡吸附1 h,最大吸附率为71.00%,吸附量为14.20 mg/g;吸附Hg(Ⅱ)的最佳条件为在25℃,质量浓度为99.87 mg/L,pH值为4,WAS与固化剂的包埋比例(质量比)为1∶5,振荡吸附1 h后,最大吸附率为60.60%,吸附量为12.12 mg/g。在所实验的质量浓度范围内,基本符合经典Langmuir等温吸附模型,固定化WAS吸附Pb(Ⅱ)和Hg(Ⅱ)的表观最大吸附量分别为88.50 mg/g和66.67 mg/g,为固定化WAS吸附剂净化Pb(Ⅱ)和Hg(Ⅱ)污染水体应用研究提供可靠依据。  相似文献   

16.
采用O_3/NaClO协同氧化_吸附法对校园屋面雨水处理进行了试验研究。考察了粉末活性炭投加量、吸附时间、搅拌速度以及初始pH对COD、氨氮、TP和浊度去除率的影响;并进行了吸附等温线及动力学模型拟合。试验结果表明:粉末活性炭的最佳投加量为50 mg/L,最佳吸附时间为60 min,最佳搅拌速度为200 r/min,最佳初始pH为7时COD,氨氮,TP和浊度的去除率分别达到了68.87%,81.90%,78.79%,78.50%。COD和氨氮的吸附等温线更符合Freundilch模型,TP吸附等温线更符合Langmuir模型,拟二级动力学模型能更好的描述粉末活性炭对雨水中COD,氨氮和TP的吸附过程,相关系数均接近于1。  相似文献   

17.
选取玉米芯作为吸附剂,对废水中Cr6+进行吸附研究,因玉米芯本身吸附效果不佳,故对其进行改性。经H3PO4、NaOH、NaNO2溶液改性后的玉米芯可以使其孔隙扩展、比表面积变大,能够较高效地去除废水中Cr6+。实验结果表明:当模拟废水中Cr6+初始浓度为20 mg/L、体积为50.00 mL时,玉米芯经NaOH溶液改性后,投加量为0.040 g,pH为5.00,吸附时间为20 min时,吸附效果最佳,废水中Cr6+的去除率为96.83%。此时,改性后玉米芯吸附Cr6+的过程与Freundlich吸附等温模型和准二级动力学模型拟合度较高。  相似文献   

18.
选取玉米芯作为吸附剂,对废水中Cr6+进行吸附研究,因玉米芯本身吸附效果不佳,故对其进行改性。经H3PO4、NaOH、NaNO2溶液改性后的玉米芯可以使其孔隙扩展、比表面积变大,能够较高效地去除废水中Cr6+。实验结果表明:当模拟废水中Cr6+初始浓度为20 mg/L、体积为50.00 mL时,玉米芯经NaOH溶液改性后,投加量为0.040 g,pH为5.00,吸附时间为20 min时,吸附效果最佳,废水中Cr6+的去除率为96.83%。此时,改性后玉米芯吸附Cr6+的过程与Freundlich吸附等温模型和准二级动力学模型拟合度较高。  相似文献   

19.
利用常规微生物资源黑曲霉(Aspergillus niger),对重金属铜进行生物吸附,研究了转速、pH值、吸附时间等影响因素对黑曲霉生物吸附Cu2+的影响.实验结果表明,当转速为100r/min时,黑曲霉对Cu2+的生物吸附量最大,为6.688mg/L;当pH为5时,黑曲霉对Cu2+的生物吸附量达到最大,为6.713mg/L;前30min ,黑曲霉对Cu2+的生物吸附非常迅速,吸附效率由0增加到18.95% ,30~60min,黑曲霉对Cu2+的生物吸附缓慢增加,60min后吸附达到稳定.  相似文献   

20.
IBAC工艺对洗浴废水中有机污染物的去除效能与机理   总被引:4,自引:0,他引:4  
采用以固定化生物活性炭IBAC为主的处理工艺对洗浴废水进行处理.处理后水的浊度、高锰酸盐指数、LAS和浴臭平均值分别为2.46 NTU,3.2mg/L,0.13mg/L和0级臭味,为了保证整体工艺的出水,IBAC进水的浊度要小于10 NTU;通过GC/MS的检测,IBAC对这种水中的有机物具有较好的去除作用.在运行10个月后的IBAC上,人工固定化的工程菌仍占优势,活性炭也具有较高的碘值和亚甲兰值.IBAC的净化作用是以微生物的降解作用为主、活性炭的物理吸附和二者的协同作用为辅.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号