首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
多目标粒子群优化算法研究   总被引:1,自引:0,他引:1  
在过去的十多年,粒子群算法对多目标优化问题的应用研究取得了较大的进展.本文首先描述多目标粒子群优化算法(MOPSO)的基本流程,然后从算法设计与应用等方面回顾MOPSO的研究进展,最后对该算法未来的研究进行了分析和展望.  相似文献   

2.
在线运动目标跟踪是目前模式识别领域的一个难点问题,目标物体角度、姿态、远近距离变化以及遮挡等给鲁棒在线跟踪算法提出了苛刻的要求,单一算法很难有效处理所有问题.多方法集成是实现鲁棒在线跟踪的一种有效手段,为此提出了一个集成on-line boosting、基于归一化互相关的模板匹配法和粒子群优化算法的自适应目标跟踪算法框架.其中,on-line boosting是基本的跟踪算法;基于归一化互相关的模板匹配法有效避免了on-line boosting过多的错误更新;而基于粒子群优化算法的跟踪策略提高了系统对快速运动、外观变化的适应能力,同时也为模板的更新提供了保障,三种算法形成了有效互补,在稳定性和可塑性之间达到了一种平衡.在不同视频测试序列上的实验结果表明,该算法有效地缓解了自适应性和漂移之间的矛盾,能够实时地完成复杂的跟踪任务.  相似文献   

3.
基于密集距离的多目标粒子群优化算法   总被引:3,自引:2,他引:1  
设计出基于密集距离的多目标粒子群优化算法(CMPSO),该算法根据密集距离大小按轮盘赌方式为每个粒子从外部档案选取全局最好位置并采用基于密集距离的方法对外部档案进行维护.将算法应用于3个复杂的测试实例,并与强度Pareto进化算法2等算法进行比较,计算结果表明CMPSO具有良好的连续优化能力.  相似文献   

4.
基于多目标粒子群优化算法的输电网规划   总被引:3,自引:0,他引:3  
输电网规划是一个离散型、非线性、多目标的混合整数规划问题,难于求解.提出一种多目标粒子群优化算法用来求解输电网规划问题.在输电网规划模型中考虑了建设投资费用、运行费用及网损费用等3方面的因素.多目标粒子群优化算法基于Pareto支配关系来更新粒子的个体极值,并采用了精英归档技术,粒子的全局极值由档案库中的非劣解提供.使用Matlab7.1对Garver-6节点系统进行仿真计算,结果表明:与传统的单目标遗传算法相比,多目标粒子群优化算法获得的规划方案总费用更低,该方法可以提高输电网规划的经济性水平.  相似文献   

5.
针对当前大部分多目标优化演化算法设计复杂、耗时巨大,以及取得的近似Pareto前沿点不够多、分布不均匀、覆盖不完整等问题,提出了一种新的基于粒子群和几何Pareto选择算法的多目标优化PSGPS算法.经过5个测试问题的实验结果表明:该算法使用较低的时间消耗,就能在前沿点个数、前沿点分布均匀性、覆盖完整度等性能指标上都优于当前流行的NSGA2,SPEA2和PESA等多目标优化演化算法.  相似文献   

6.
为了更好地解决多目标优化问题,提出一种求解多目标优化问题的新型memetic算法.该算法利用微粒子群算法的全局搜索能力和同步启发式局部搜索相结合进行局部微调;利用基于模糊全局极值的概念处理种群中过早出现收敛以及解多样性保持等问题.通过进一步检测得出新算法的特点并展示其在多目标优化问题上的独立性和综合效应.同时应用新型算法对IEEE14节点标准电网进行无功优化计算.结果证明,该新型memetic算法具有很好的寻优能力,验证了该算法的有效性及科学性.  相似文献   

7.
粒子滤波算法应用于目标跟踪时,存在样本贫化和计算量大的问题,提出了一种基于智能优化粒子滤波算法.利用粒子群算法良好的局部寻优和全局寻优能力对重采样之后的粒子集进行操作,使粒子可以智能地合作起来,减轻样本贫化.实验结果表明,该算法实时性强,提高目标状态的估计精度,缩短了计算时间,其滤波性能优于常规粒子滤波算法.  相似文献   

8.
粒子群算法的特性使得其在解决多目标优化问题时具有很强的竞争性,提出了一种结合小生境思想和在线归档策略的多目标粒子群优化算法,该算法能够在进化过程中保持优良种群。通过3个测试函数来评价算法性能并将算法与NSGA-II做比较,结果表明提出的算法的时间耗费明显小于NSGA-II算法且解集沿着Pareto非劣最优目标域有很好的扩展性。  相似文献   

9.
提出组合粒子群优化和分布估计的多目标优化算法。在寻优迭代过程中,一半的后代由粒子群算法产生,带有变异操作的粒子群优化算法具有全局搜索能力;另一半后代采用分布估计算法来产生,分布估计算法具有良好的学习和局部搜索能力,由其提取决策空间的信息并建立期望解的概率分布模型,对这个分布模型进行采样而产生下一代的解。与多种多目标优化算法的比较实验表明,组合算法在基准函数ZDT1~ZDT3,ZDT6和ZDT6-1上获得的Pareto解集具有较好的收敛性与多样性,在ZDT4实例上的性能适中。  相似文献   

10.
当前不确定动态多目标优化方法通常将多目标问题转换成单目标问题,将其它目标看作约束条件,仅可得到单个解,无法有效体现不确定多目标之间的关系,导致得到的解质量低。为此,提出一种新的基于粒子群算法的不确定动态多目标优化方法,给出不确定动态多目标优化问题的数学描述,介绍了粒子群算法,针对粒子群算法容易陷入局部最优的弊端,引入动态变异算子对其进行改进,通过改进的位置更新公式实现粒子群算法位置的自适应更新,给出解决不确定多目标优化问题的详细过程,在此基础上,通过分段线性函数参数化实现不确定动态多目标优化。实验结果表明,所提方法搜索能力强,采用所提方法得到的解与真实解最相近,质量最高。  相似文献   

11.
针对粒子群算法(PSO)及其变种在约束多目标等复杂问题优化过程中所遇到的易陷入局部最优和收敛性问题,提出了一种基于动态学习和突变因子的粒子群算法(DSPSO)。首先,通过分析粒子群群体的学习机制,采用动态的学习策略,使粒子自适应动态调整认知成分和社会成分在迭代更新中的权重,以引导自身向最优解的方向探索,有效改善了群体的收敛速度;其次,通过引入阶梯突变因子的概念,使粒子在陷入局部最优时进行试探跳跃,阶梯突变赋予粒子突破更新步长限制的能力,使粒子在当前位置速度矢量方向上的二维空间邻域内进行试探寻优,当发现更优解时则跳出当前局部最优;最后,通过在BenchMark基准函数测试集中典型函数上的实验,证明了DSPSO的求解精度和收敛速度均优于对比算法。在多目标车辆路径问题实例优化中,解的可接受率和成功率分别为0.91和0.66,远优于对比算法中最优解的0.16和0.11,体现了所提改进算法在车辆路径问题中的优越性。  相似文献   

12.
动态拓扑结构的多目标粒子群优化算法   总被引:2,自引:0,他引:2  
介绍了一种动态拓扑结构的多目标粒子群优化算法(dynamical topology multiple-objective particle swarmoptimization,DMPSO).给出了一种新的储备集更新策略,定义了支配度和邻域拥挤度及粒子差异度的概念,根据支配度及邻域拥挤度的大小来决定储备集的更新,增强了解的多样性和均匀性.为了防止早熟收敛,结合邻域拥挤度和粒子差异度,给出了一种拟小世界动态拓扑邻域结构来平衡粒子的全局搜索能力和局部搜索能力.最后通过对几个例子的数值实验说明算法的可行性,并通过成功地应用在实际工程问题上说明方法的有效性.  相似文献   

13.
一种离散型多目标粒子群优化算法   总被引:1,自引:0,他引:1  
为获得更好的非劣前端,提出一种离散型多目标粒子群优化算法。该算法根据离散型多目标优化问题的特点,将种群分成多个子种群,在各个子种群中利用表现型共享的适应度函数选择每个子种群的最优粒子。通过多个最优粒子的引导,使整个种群分布更均匀,避免陷入局部最优,保证了解的多样性。实验表明了该算法的有效性。  相似文献   

14.
提出了一种基于密度聚类的领导粒子选择策略的多目标粒子群优化算法。首先,将粒子进行分类;然后,对外部档案采用改进的循环拥挤距离排序,并将高斯变异引入到进化种群,在保持具有全局搜索能力的同时,也避免了陷入局部最优。对WFG系列测试函数的仿真结果表明,与经典多目标优化算法相比,本文算法在解的收敛性和多样性等方面有显著的提升。  相似文献   

15.
粒子群算法在多目标优化中的应用综述   总被引:5,自引:0,他引:5  
粒子群优化算法是一种基于群体智能的全局随机寻优算法。它通过粒子搜寻自身的个体最优解和粒子群体的全局最优解来完成更新优化。粒子群算法在很多领域得到了广泛的应用。本文主要论述了多目标PSO约束优化的基本思想、实现情况,并展望了PSO算法在多目标优化中的未来发展方向。  相似文献   

16.
针对现有云计算环境中任务调度算法资源利用率低、完成时间长和调度成本高的问题,提出一种基于布谷鸟搜索算法(Cuckoo Search Algorithm,CSA)和粒子群优化(Particle Swarm Optimization,PSO)混合的多目标优化任务调度策略.该策略以完成时间、成本以及最后期限违反率为目标函数,...  相似文献   

17.
多目标最优化的粒子群算法   总被引:8,自引:0,他引:8  
粒子群算法是一种新出现的进化算法,相对其它进化算法,它收敛速度快、规则简单、易于编程实现.采用粒子群算法对资产投资的多目标问题进行优化,解决了传统方法难以解决的问题.数值实例表明,采用该算法能对资产投资问题做出优化组合决策.  相似文献   

18.
郭占富  崔葛谨 《科技资讯》2008,(29):236-236
本文描述了一种新颖的基于粒子群的多目标优化方法,即自适应多目标粒子群优化。该算法采用自适应的方法,使惯性权重和加速度系数随时间的变化而改变,从而有助于算法更有效的探索搜索空间。对三个典型多目标测试函数所作实验的结果验证了该方法的有效性和快速性。  相似文献   

19.
基于约束骨干粒子群算法的化工过程动态多目标优化   总被引:1,自引:0,他引:1  
大多数化工过程是动态过程,需同时优化多个目标,从而带来复杂的约束多目标动态优化问题。因此提出了一种动态约束多目标骨干粒子群算法,即采用一种新型约束处理方法,结合Pareto支配和ε约束支配技术的双档集机制;针对约束优化问题寻优难度更大,更易陷入局部最优的特点,采用局部搜索和混合变异策略,并自适应调整搜索步长,提高算法的探索和开发能力;采用分段线性函数参数化方法,构建一种动态约束多目标粒优化算法,并将其用于解决间歇反应器的动态多目标优化问题。测试实验表明:与NSGA-II和自适应差分进化算法(SADE-εCD)比较,该算法具有更优秀的收敛性与分布性;应用到化工过程多目标动态优化问题实例进行比较表明,多目标骨干粒子群算法在约束多目标动态优化问题的求解中表现出更好的应用前景。  相似文献   

20.
作者针对一类决策空间的维数随时间变化的动态多目标优化问题,借鉴免疫应答蕴含的动态进化机制,提出了一种动态多目标优化免疫算法。算法设计中,依据抗体学习机理,设计几种具有自适应能力的免疫算子进化当前抗体群,以及借助免疫系统的识别功能设计环境识别规则,用于加速相似环境的寻优过程。另外,借助两个性能评价指标,经由比较性的数值试验,获得该算法具有较好的搜索效果以及较稳定的环境跟踪能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号