首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Griscelli syndrome (GS, MIM 214450), a rare, autosomal recessive disorder, results in pigmentary dilution of the skin and the hair, the presence of large clumps of pigment in hair shafts and an accumulation of melanosomes in melanocytes. Most patients also develop an uncontrolled T-lymphocyte and macrophage activation syndrome (known as haemophagocytic syndrome, HS), leading to death in the absence of bone-marrow transplantation. In contrast, early in life some GS patients show a severe neurological impairment without apparent immune abnormalities. We previously mapped the GS locus to chromosome 15q21 and found a mutation in a gene (MYO5A) encoding a molecular motor in two patients. Further linkage analysis suggested a second gene associated with GS was in the same chromosomal region. Homozygosity mapping in additional families narrowed the candidate region to a 3.1-cM interval between D15S1003 and D15S962. We detected mutations in RAB27A, which lies within this interval, in 16 patients with GS. Unlike MYO5A, the GTP-binding protein RAB27A appears to be involved in the control of the immune system, as all patients with RAB27A mutations, but none with the MYO5A mutation, developed HS. In addition, RAB27A-deficient T cells exhibited reduced cytotoxicity and cytolytic granule exocytosis, whereas MYO5A-defective T cells did not. RAB27A appears to be a key effector of cytotoxic granule exocytosis, a pathway essential for immune homeostasis.  相似文献   

3.
Li Y  Fan C  Xing Y  Jiang Y  Luo L  Sun L  Shao D  Xu C  Li X  Xiao J  He Y  Zhang Q 《Nature genetics》2011,43(12):1266-1269
Increasing crop yield is one of the most important goals of plant science research. Grain size is a major determinant of grain yield in cereals and is a target trait for both domestication and artificial breeding(1). We showed that the quantitative trait locus (QTL) GS5 in rice controls grain size by regulating grain width, filling and weight. GS5 encodes a putative serine carboxypeptidase and functions as a positive regulator of grain size, such that higher expression of GS5 is correlated with larger grain size. Sequencing of the promoter region in 51 rice accessions from a wide geographic range identified three haplotypes that seem to be associated with grain width. The results suggest that natural variation in GS5 contributes to grain size diversity in rice and may be useful in improving yield in rice and, potentially, other crops(2).  相似文献   

4.
Germline gain-of-function mutations in RAF1 cause Noonan syndrome   总被引:11,自引:0,他引:11  
Noonan syndrome is characterized by short stature, facial dysmorphia and a wide spectrum of congenital heart defects. Mutations of PTPN11, KRAS and SOS1 in the RAS-MAPK pathway cause approximately 60% of cases of Noonan syndrome. However, the gene(s) responsible for the remainder are unknown. We have identified five different mutations in RAF1 in ten individuals with Noonan syndrome; those with any of four mutations causing changes in the CR2 domain of RAF1 had hypertrophic cardiomyopathy (HCM), whereas affected individuals with mutations leading to changes in the CR3 domain did not. Cells transfected with constructs containing Noonan syndrome-associated RAF1 mutations showed increased in vitro kinase and ERK activation, and zebrafish embryos with morpholino knockdown of raf1 demonstrated the need for raf1 for the development of normal myocardial structure and function. Thus, our findings implicate RAF1 gain-of-function mutations as a causative agent of a human developmental disorder, representing a new genetic mechanism for the activation of the MAPK pathway.  相似文献   

5.
All vertebrates display a characteristic asymmetry of internal organs with the cardiac apex, stomach and spleen towards the left, and the liver and gall bladder on the right. Left-right (L-R) axis abnormalities or laterality defects are common in humans (1 in 8,500 live births). Several genes (such as Nodal, Ebaf and Pitx2) have been implicated in L-R organ positioning in model organisms. In humans, relatively few genes have been associated with a small percentage of human situs defects. These include ZIC3 (ref. 5), LEFTB (formerly LEFTY2; ref. 6) and ACVR2B (encoding activin receptor IIB; ref. 7). The EGF-CFC genes, mouse Cfc1 (encoding the Cryptic protein; ref. 9) and zebrafish one-eyed pinhead (oep; refs 10, 11) are essential for the establishment of the L-R axis. EGF-CFC proteins act as co-factors for Nodal-related signals, which have also been implicated in L-R axis development. Here we identify loss-of-function mutations in human CFC1 (encoding the CRYPTIC protein) in patients with heterotaxic phenotypes (randomized organ positioning). The mutant proteins have aberrant cellular localization in transfected cells and are functionally defective in a zebrafish oep-mutant rescue assay. Our findings indicate that the essential role of EGF-CFC genes and Nodal signalling in left-right axis formation is conserved from fish to humans. Moreover, our results support a role for environmental and/or genetic modifiers in determining the ultimate phenotype in humans.  相似文献   

6.
7.
BRIP1 (also called BACH1) is a DEAH helicase that interacts with the BRCT domain of BRCA1 (refs. 1-6) and has an important role in BRCA1-dependent DNA repair and checkpoint functions. We cloned the chicken ortholog of BRIP1 and established a homozygous knockout in the avian B-cell line DT40. The phenotype of these brip1 mutant cells in response to DNA damage differs from that of brca1 mutant cells and more closely resembles that of fancc mutant cells, with a profound sensitivity to the DNA-crosslinking agent cisplatin and acute cell-cycle arrest in late S-G2 phase. These defects are corrected by expression of human BRIP1 lacking the BRCT-interaction domain. Moreover, in human cells exposed to mitomycin C, short interfering RNA-mediated knock-down of BRIP1 leads to a substantial increase in chromosome aberrations, a characteristic phenotype of cells derived from individuals with Fanconi anemia. Because brip1 mutant cells are proficient for ubiquitination of FANCD2 protein, our data indicate that BRIP1 has a function in the Fanconi anemia pathway that is independent of BRCA1 and downstream of FANCD2 activation.  相似文献   

8.
9.
The newly recognized ataxia-ocular apraxia 1 (AOA1; MIM 208920) is the most frequent cause of autosomal recessive ataxia in Japan and is second only to Friedreich ataxia in Portugal. It shares several neurological features with ataxia-telangiectasia, including early onset ataxia, oculomotor apraxia and cerebellar atrophy, but does not share its extraneurological features (immune deficiency, chromosomal instability and hypersensitivity to X-rays). AOA1 is also characterized by axonal motor neuropathy and the later decrease of serum albumin levels and elevation of total cholesterol. We have identified the gene causing AOA1 and the major Portuguese and Japanese mutations. This gene encodes a new, ubiquitously expressed protein that we named aprataxin. This protein is composed of three domains that share distant homology with the amino-terminal domain of polynucleotide kinase 3'- phosphatase (PNKP), with histidine-triad (HIT) proteins and with DNA-binding C2H2 zinc-finger proteins, respectively. PNKP is involved in DNA single-strand break repair (SSBR) following exposure to ionizing radiation and reactive oxygen species. Fragile-HIT proteins (FHIT) cleave diadenosine tetraphosphate, which is potentially produced during activation of the SSBR complex. The results suggest that aprataxin is a nuclear protein with a role in DNA repair reminiscent of the function of the protein defective in ataxia-telangiectasia, but that would cause a phenotype restricted to neurological signs when mutant.  相似文献   

10.
11.
12.
Chen T  Hevi S  Gay F  Tsujimoto N  He T  Zhang B  Ueda Y  Li E 《Nature genetics》2007,39(3):391-396
Studies have shown that DNA (cytosine-5-)-methyltransferase 1 (DNMT1) is the principal enzyme responsible for maintaining CpG methylation and is required for embryonic development and survival of somatic cells in mice. The role of DNMT1 in human cancer cells, however, remains highly controversial. Using homologous recombination, here we have generated a DNMT1 conditional allele in the human colorectal carcinoma cell line HCT116 in which several exons encoding the catalytic domain are flanked by loxP sites. Cre recombinase-mediated disruption of this allele results in hemimethylation of approximately 20% of CpG-CpG dyads in the genome, coupled with activation of the G2/M checkpoint, leading to arrest in the G2 phase of the cell cycle. Although cells gradually escape from this arrest, they show severe mitotic defects and undergo cell death either during mitosis or after arresting in a tetraploid G1 state. Our results thus show that DNMT1 is required for faithfully maintaining DNA methylation patterns in human cancer cells and is essential for their proliferation and survival.  相似文献   

13.
14.
DNA damage surveillance networks in human cells can activate DNA repair, cell cycle checkpoints and apoptosis in response to fewer than four double-strand breaks (DSBs) per genome. These same networks tolerate telomeres, in part because the protein TRF2 prevents recognition of telomeric ends as DSBs by facilitating their organization into T loops. We now show that TRF2 associates with photo-induced DSBs in nontelomeric DNA in human fibroblasts within 2 s of irradiation. Unlike gammaH2AX, a common marker for DSB damage, TRF2 forms transient foci that colocalize closely with DSBs. The TRF2 DSB response requires the TRF2 basic domain but not its Myb domain and occurs in the absence of functional ATM and DNA-PK protein kinases, MRE11/Rad50/NBS1 complex and Ku70, WRN and BLM repair proteins. Furthermore, overexpression of TRF2 inhibits DSB-induced phosphorylation of ATM signaling targets. Our results implicate TRF2 in an initial stage of DSB recognition and processing that occurs before association of ATM with DSBs and activation of the ATM-dependent DSB response network.  相似文献   

15.
16.
17.
18.
The alymphoplasia (aly) mutation of mouse is autosomal recessive and characterized by the systemic absence of lymph nodes (LN) and Peyer's patches (PP) and disorganized splenic and thymic structures with immunodeficiency. Although recent reports have shown that the interaction between lymphotoxin (LT) and the LT beta-receptor (Ltbeta r, encoded by Ltbr) provides a critical signal for LN genesis in mice, the aly locus on chromosome 11 is distinct from those for LT and its receptor. We found that the aly allele carries a point mutation causing an amino acid substitution in the carboxy-terminal interaction domain of Nf-kappa b-inducing kinase (Nik, encoded by the gene Nik). Transgenic complementation with wild-type Nik restored the normal structures of LN, PP, spleen and thymus, and the normal immune response in aly/aly mice. In addition, the aly mutation in a kinase domain-truncated Nik abolished its dominant-negative effect on Nf-kappa b activation induced by an excess of Ltbeta r. Our observations agree with previous reports that Ltbeta r-deficient mice showed defects in LN genesis and that Nik is a common mediator of Nf-kappa b activation by the tumour necrosis factor (TNF) receptor family. Nik is able to interact with members of the TRAF family (Traf1, 2, 3, 5 and 6), suggesting it acts downstream of TRAF-associating receptor signalling pathways, including Tnfr, Cd40, Cd30 and Ltbeta r. The phenotypes of aly/aly mice are more severe than those of Ltbr-/- mice, however, indicating involvement of Nik in signal transduction mediated by other receptors.  相似文献   

19.
t(1;22) is the principal translocation of acute megakaryoblastic leukemias. Here we show this chromosomal rearrangement to result in the fusion of two novel genes, RNA-binding motif protein-15 (RBM15), an RNA recognition motif-encoding gene with homology to Drosophila spen, and Megakaryoblastic Leukemia-1 (MKL1), a gene encoding an SAP (SAF-A/B, Acinus and PIAS) DNA-binding domain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号