共查询到19条相似文献,搜索用时 81 毫秒
1.
2.
定位精度是评价雷电定位网络的重要指标之一,定位算法直接关系到雷电探测结果的精度。经典定位法抗误差干扰能力差、定位精度低,传统迭代算法易于发散且会陷入局部最优。为了实现更有效的定位,在定位计算中引入改进密度聚类算法(adaptive density-based spatial clustering of applications with noise,ADBSCAN)。通过雷击事故实例和区域仿真分析了定位算法的性能。结果表明,ADBSCAN不需要人工干预,对于雷电定位结果的聚类效果更好;基于ADBSCAN的雷电定位算法克服了传统定位算法的缺点,提高了抗误差干扰的能力,能稳定并精确求解出雷击点。 相似文献
3.
粒子群优化的多机器人协作定位方法 总被引:1,自引:0,他引:1
针对异质多机器人具有不同的感知能力和处理能力的特点,提出一种基于粒子群优化的多机器人协作相对定位方法.该方法将常规粒子滤波方法与粒子群优化算法有机结合,通过粒子群优化方法对预估粒子进行更新,同时利用多机器人之间的相对观测信息,调整粒子的提议分布和粒子权重,增强多机器人位置预测的有效性,提高多机器人定位的精度.实时数据实验结果表明:该方法正确、可行. 相似文献
4.
5.
张世勇 《重庆工商大学学报(自然科学版)》2007,24(3):241-245
将禁忌搜索思想引入粒子群优化算法中,改进惯性权重,添加罚函数重新构造适应度函数;在此基础上,提出了一种基于禁忌搜索的新的混合粒子群优化算法(NHPSO),通过4个标准测试函数实验,结果表明:NHPSO算法比基本粒子群优化算法(PSO)具有更好的全局寻优能力、更快的收敛速度以及获得更高精度解的能力。 相似文献
6.
针对传统Rao-Blackwellized粒子滤波器存在的粒子消耗问题,提出了一种基于粒子群优化的移动机器人同步定位与制图方法. 该方法在粒子重采样过程中利用粒子群优化算法获得机器人位姿的建议分布,并引入遗传算法中的交叉和变异操作对求得的粒子集进一步优化、调整. 改进后的粒子分布保持了粒子的多样性,有效提高了机器人位姿估计的一致性. 仿真结果表明,本文提出的方法与传统Rao-Blackwellized粒子滤波器相比,能有效解决粒子耗尽问题,使机器人获得更精准的定位和更准确的地图,具有可行性、实用性. 相似文献
7.
目前薄板件定位策略优化需要进行大量的有限元分析,限制了夹具设计的效率。为了减少有限元分析次数,提出了一种基于惯性权值的粒子群改进算法,并通过对有限元软件的二次开发将该优化算法应用于夹具定位点的优化设计当中,以某车身前翼子板为实例进行了夹具定位优化设计,结果表明了方法的有效性。 相似文献
8.
肖丽 《西南师范大学学报(自然科学版)》2011,36(2)
提出一种结合多样性策略的自适应粒子群优化算法,该算法在粒子群的全局优化过程中,使用根据种群搜索状态自适应调整邻域空间的局部搜索算法加强算法的局部搜索能力,并允许非优粒子具有引导种群搜索方向的可能性.在著名基准函数上的对比实验结果表明,这种混合粒子群优化算法能获得更高的搜索成功率和质量更好的解,特别在高维多峰函数优化上表现出较强的竞争力. 相似文献
9.
针对室内LOS/NLOS混合环境,提出基于假设检验的方法确定NLOS状态,并采用具有收缩因子的粒子群优化算法进行定位.在采样值存在异常情况时,样本中位值性能优于样本均值.因此,在LOS和NLOS状态下,分别采用样本均值和样本中位值建立最小平方误差代价函数.为了增强算法的全局和局部搜索能力,在粒子群优化算法的基础上引入收缩因子.仿真实验表明,在NLOS遮挡比较严重的情况下,所提出的基于样本均值和样本中位值改进的粒子群优化定位算法较只采用样本均值改进的粒子群优化算法和一般的粒子群优化算法定位精度高. 相似文献
10.
通过对已提出的适应Memetic算法的研究与分析,采用改进粒子群优化作为Memetic算法的全局优化策略按照不同类型的适应Memetic算法构成六类基于粒子群优化的适应Memetic算法,并用于求解典型的测试函数。根据对实验结果分析这几类算法的优缺点。实验结果表明适应PMemetic算法提高了全局搜索能力、收敛速度和解的精度。 相似文献
11.
利用粒子群算法求解无容量限制设施寻位问题,构造设施位置的粒子表达式,建立此问题的粒子群算法.并对12个基准测试题进行数值试验分析,结果表明粒子群算法可以快速、有效求得无容量限制设施寻位问题的优化解,是求解此问题的一个较好方案. 相似文献
12.
为了满足含分布式电源配电网故障定位的要求,对传统二进制粒子群算法进行改进,利用改进二进制粒子群算法(BPSO)解决配电网故障定位问题。改进BPSO初始化随机数采用均匀分布,同时引入收缩因子和线性变换的惯性权重来提升算法收敛于最优解的能力,避免陷入局部最优,提升故障定位的精确性。对算例配电网中的多种故障情形进行仿真分析,包含少量故障信息畸变的情况,诊断结论全部正确。仿真结果表明,改进算法在精确性和收敛速度上均优于传统粒子群算法,对含分布式电源的配电网故障定位具有一定的有效性和容错性。改进BPSO可以满足电网定位对准确和实时性的要求。 相似文献
13.
14.
针对标准粒子群算法在处理复杂函数时存在的收敛速度慢、易陷入局部最优的缺点,提出了新的混合粒子群算法.该算法利用混沌运动的遍历性、对初始条件的敏感性等特性进行群体的混沌初始化,且捕食搜索策略可以通过调节限制级别的控制粒子群的搜索空间,从而平衡全局搜索和局部搜索.测试结果表明,新算法具有更快的收敛速度和更强的全局寻优能力. 相似文献
15.
提出组合粒子群优化和分布估计的多目标优化算法。在寻优迭代过程中,一半的后代由粒子群算法产生,带有变异操作的粒子群优化算法具有全局搜索能力;另一半后代采用分布估计算法来产生,分布估计算法具有良好的学习和局部搜索能力,由其提取决策空间的信息并建立期望解的概率分布模型,对这个分布模型进行采样而产生下一代的解。与多种多目标优化算法的比较实验表明,组合算法在基准函数ZDT1~ZDT3,ZDT6和ZDT6-1上获得的Pareto解集具有较好的收敛性与多样性,在ZDT4实例上的性能适中。 相似文献
16.
综合考虑逆向物流中的车辆路径问题和选址分配问题,首先分析问题的特点,并建立问题的数据模型,然后提出一种基于贪心算法的改进粒子群优化算法.实验结果表明,新算法能够以较快的收敛速度得到问题的近似最优解,是解决该类问题的有效方法. 相似文献
17.
李辉 《陕西理工学院学报(自然科学版)》2011,27(1):85-90
针对基本粒子群算法容易陷入局部最优的缺点,将禁忌搜索算法中的禁忌思想与粒子群算法结合,提出了一种新的粒子群算法——禁忌粒子群算法(TPSO)。该算法将粒子群算法找到的当前最优值禁忌一段时间后再释放,以此避免算法陷入局部最优,即使算法暂时陷入局部最优,该算法跳出局优的能力也很强。实验表明,TPSO在收敛速度以及收敛精度方面都比基本粒子群算法有了很大程度的提高,特别对于多极值问题搜索效果非常好,可以很好的解决算法陷入局部最优的问题。 相似文献
18.
针对粒子群优化算法随维数增大群体多样性相对减小而早熟收敛的问题,在对和谐搜索算法进行适应性改进的基础上,将其引入粒子群算法中,提出一种动态和谐搜索混合粒子群优化算法(DHSPSO).该方法使得粒子在搜索初期更具遍历性,降低算法对初始值的敏感性,并通过和谐搜索算法搜索的随机性和优胜劣汰机制改善粒子群的多样性,使得算法具有更快的收敛速度与更好的全局搜索能力.以多个标准测试函数优化进行仿真测试,结果表明,DHSPSO算法在进行高维优化问题时,在寻优速度、精度和成功率等方面均显示出良好的优化效果. 相似文献
19.
王志刚 《哈尔滨商业大学学报(自然科学版)》2009,25(4):464-466
粒子群优化算法是求解函数优化问题的一种新的进化算法,然而它在求解高维函数时容易陷入局部最优.为了克服这个缺点,通过调整粒子的速度更新公式,使粒子获得更多信息来调整自身的状态,以增强算法跳出局部最优的能力.通过对6个基准函数的仿真实验,表明了改进算法的有效性. 相似文献