首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一种基于距离的聚类和孤立点检测算法   总被引:2,自引:0,他引:2  
提出了一种基于距离的聚类和孤立点检测算法(DBCOD),根据距离阈值对数据点进行聚类,在聚类过程中记录每个数据点的密度,并根据密度阈值确定数据点是否为孤立点.实验结果表明,该算法不仅能够对数据集进行正确的聚类,可以发现任意形状的聚类,算法执行效率优于DBSCAN,具有对噪音数据、数据输入顺序不敏感等优点,同时还能有效地进行孤立点检测.  相似文献   

2.
K-means算法以其简单、快速的特点在现实生活中得到广泛应用。然而传统K-means算法容易受到噪声的影响,导致聚类结果不稳定,聚类精度不高。针对这个问题,提出一种基于离群点检测的K-means算法,首先检测出数据集中的离群点,在选择初始种子的时候,避免选择离群点作为初始种子。然后在对非离群点进行聚类完成后,根据离群点到各个聚类的距离,将离群点划分到相应的聚类中。算法有效降低离群点对K-means算法的影响,提高聚类结果的准确率。实验表明,在聚类类别数给定的前提下,在标准数据集UCI上该算法有效降低离群点对K-means算法的影响,提高了聚类的精确率和稳定性。  相似文献   

3.
In the K-means clustering algorithm, each data point is uniquely placed into one category. The clustering quality is heavily dependent on the initial cluster centroid. Different initializations can yield varied results; local adjustment cannot save the clustering result from poor local optima. If there is an anomaly in a cluster, it will seriously affect the cluster mean value. The K-means clustering algorithm is only suitable for clusters with convex shapes. We therefore propose a novel clustering algorithm CARDBK—"centroid all rank distance(CARD)" which means that all centroids are sorted by distance value from one point and "BK" are the initials of "batch K-means"—in which one point not only modifies a cluster centroid nearest to this point but also modifies multiple clusters centroids adjacent to this point, and the degree of influence of a point on a cluster centroid depends on the distance value between this point and the other nearer cluster centroids. Experimental results showed that our CARDBK algorithm outperformed other algorithms when tested on a number of different data sets based on the following performance indexes: entropy, purity, F1 value, Rand index and normalized mutual information(NMI). Our algorithm manifested to be more stable, linearly scalable and faster.  相似文献   

4.
基于纵横距离的单纯异常点检测算法及应用   总被引:1,自引:0,他引:1  
首先讨论了异常点挖掘在数据挖掘过程中的重要性,产生异常点的原因,以及目前用于检测异常点的常用算法,指出了单纯应用距离法的局限性,提出了基于纵横距离的异常点检测算法,并给出了基于学生成绩检测的应用实例,该方法不需要进行大量的样本训练,在异常点检测方面有较好的效果.  相似文献   

5.
研究了基于可能性熵理论的聚类问题.首先定义并讨论了可能性熵,继而将可能性熵引入聚类分析,提出了可能性熵聚类算法.它考虑到熵聚类的全局和局部效应,具有清晰的物理意义和数学特征.该算法还能在聚类过程中自动地确定分辨率参数,克服了对于噪声和外围点的敏感性.仿真实验证明,即使各类大小不一,数据集被强噪声所污染时,该算法仍能有效地估计各类中心.  相似文献   

6.
基于提供的11种聚类外部指标来组合多个聚类,通过单个对象的簇标记变化递增地更新目标函数来求出共识聚类,并利用模拟退火优化算法框架来解决局部最优问题。在UCI和TREC数据库中选取10个数据集进行几种算法的外部指标聚类性能评估实验,从实验数据的归一化角度和排序角度评估不同外部指标的聚类性能,结果表明:MSS3指标从整体性能表现上最适合用于引导聚类集成,可以作为算法默认的共识函数;基于模拟退火优化算法的聚类集成算法在7个数据集上优于其他聚类方法,而DBSCAN、MCLA、Kmearns算法则在其余3个数据集上表现最好。  相似文献   

7.
提出了一种基于距离和密度的聚类和孤立点检测算法.该算法根据距离和密度阈值对数据进行聚类,同时发现数据中的孤立点.实验结果表明,该算法能够识别任意形状的聚类,对高维数据有效,能够很好的识别出孤立点.  相似文献   

8.
针对可能性聚类对初始化参数设置依赖性较强的问题, 提出一种基于中心自动融合的可能性聚类算法, 并证明了算法中尺度因子的多尺度性质. 该算法通过建立中心的相关性判定准则, 根据数据自身分布特点动态调整聚类数目与结构, 通过引入尺度参数实现对数据的多分辨率分析. 与传统的模糊和可能性聚类算法相比, 该算法摆
脱了对聚类数目及初始化中心或隶属度矩阵设置的依赖性, 易于控制. 人造数据和真实数据实验结果表明, 该算法能自动确定数据中不同尺度下的聚类结构, 具有识别不同大小聚类结构的能力.  相似文献   

9.
针对异常模式挖掘中的情境离群点检测问题,提出一种基于图的检测方法.首先对数据实例构建一个实例图,然后采用一个滑动窗口穿越数据实例,对处于滑动窗口内的数据实例,计算结点之间的闵可夫斯基距离作为边权值,然后采用最小生成树聚类算法对实例图进行聚类,再采用第二个滑动窗口穿越数据实例,根据窗口内的数据实例是否属于主趋势聚类赋予不同的离群值评分,不属于主趋势聚类的数据实例被认为是潜在的离群点.仿真实验和实际数据分析表明该方法在一元序列数据检测中是切实可行的,该方法具有较好的适用性和扩展性.  相似文献   

10.
A novel approach for outlier detection with iterative clustering( ICOD) in diverse subspaces is proposed. The proposed methodology comprises two phases,iterative clustering and outlier factor computation. During the clustering phase, multiple clusterings are detected alternatively based on an optimization procedure that incorporates terms for cluster quality and novelty relative to existing solution. Once new clusters are detected,outlier factors can be estimated from a new definition for outliers( cluster based outlier), which provides importance to the local data behavior. Experiment shows that the proposed algorithm can detect outliers which exist in different clusterings effectively even in high dimensional data sets.  相似文献   

11.
一种新的密度加权粗糙K-均值聚类算法   总被引:1,自引:0,他引:1  
为了克服粗糙K-均值聚类算法初始聚类中心点随机选取,以及样本密度函数定义所存在的缺陷,基于数据对象所在区域的样本点密集程度,定义了新的样本密度函数,选择相互距离最远的K个高密度样本点作为初始聚类中心,克服了现有粗糙K-均值聚类算法的初始中心随机选取的缺点,从而使得聚类结果更接近于全局最优解。同时在类均值计算中,对每个样本根据定义的密度赋以不同的权重,得到不受噪音点影响的更合理的质心。利用UCI机器学习数据库的6组数据集,以及随机生成的带有噪音点的人工模拟数据集进行测试,证明本文算法具有更好的聚类效果,而且对噪音数据有很强的抗干扰性能。  相似文献   

12.
作为大数据的重要组成,产生于传感器、移动电话设备、社交网络等的不确定流数据因其具有流速可变、规模宏大、单遍扫描及不确定性等特点,传统聚类算法不能满足用户高效实时的查询要求.首先利用MBR(minimum bounding rectangle)描述不确定元组的分布特性,并提出一种基于期望距离的不确定数据流聚类算法,计算期望距离范围的上下界剪枝距离较远的簇以减少计算量;其次针对簇内元组的分布特征提出了簇MBR的概念,提出一种基于空间位置关系的聚类算法,根据不确定元组MBR和簇MBR的空间位置关系排除距离不确定元组较远的簇,从而提高聚类算法效率;最后在合成数据集和真实数据集进行实验,结果验证了所提出算法的有效性和高效性.  相似文献   

13.
We propose a new clustering algorithm that assists the researchers to quickly and accurately analyze data. We call this algorithm Combined Density-based and Constraint-based Algorithm (CDC). CDC consists of two phases. In the first phase, CDC employs the idea of density-based clustering algorithm to split the original data into a number of fragmented clusters. At the same time, CDC cuts off the noises and outliers. In the second phase, CDC employs the concept of K-means clustering algorithm to select a greater cluster to be the center. Then, the greater cluster merges some smaller clusters which satisfy some constraint rules.Due to the merged clusters around the center cluster, the clustering results show high accu racy. Moreover, CDC reduces the calculations and speeds up the clustering process. In this paper, the accuracy of CDC is evaluated and compared with those of K-means, hierarchical clustering, and the genetic clustering algorithm (GCA)proposed in 2004. Experimental results show that CDC has better performance.  相似文献   

14.
先通过数据约简技术在不损失数据聚类结构的前提下对数据进行精简, 利用提出的近似模糊c均值聚类算法对精简后数据进行划分得到初始化中心, 再在该中心基础上通过模糊c均值聚类算法结合聚类有效性指标, 实现对数据的无监督聚类, 改进了无监督模糊c均值聚类算法聚类性能过分依赖初始化中心及大数据集下计算效率不理想的问题. 与已有算法的对比实验表明, 所提出的算法具有更高的求解精度与计算效率, 得到的聚类个数更合理.  相似文献   

15.
为了在多维聚类分析中运用有效距离度量方法表征数据对象的邻近度,提出一种协方差测距(covariance distance measure analysis,CDM)算法,首先,采用模糊C均值(fuzzy c-means,FCM)方法对数据对象赋予权值,得到每个样本点相对类别特征的隶属度,再依据隶属度计算每个样本的差异度;其次,为了使类别分离最大化,用样本点同关联类别的协方差距离度量代替模糊聚类中欧式距离度量作为优化问题的第一个标准,使相似数据对象更为接近;最后,用样本点间的协方差距离度量作为第二个优化标准,使相异数据相互隔开,交替固定变量迭代计算最优解,使聚类指标和距离度量学习参数同时得到优化,获得更好的聚类结果。在不同数据集上的实验结果表明,与FCM-Sig和UNCA算法相比,CDM算法在聚类准确性和算法收敛性方面均有更好表现。  相似文献   

16.
一种改进的聚类和孤立点检测算法   总被引:1,自引:0,他引:1  
对基于距离的聚类及基于密度的孤立点检测方法进行了分析研究,提出了一种基于距离和密度的聚类和孤立点检测算法DDBCOD.该算法根据距离和密度阈值对数据进行聚类,并发现数据中的孤立点.实验表明,该算法能够识别任意形状的聚类,对高维数据有效,能够很好地识别出孤立点.  相似文献   

17.
针对信用评价数据存在离群点和噪声问题, 提出一种基于离群点剔除的支持向量机(SVM)信用风险评价模型. 该模型利用模糊c-均值聚类算法剔除样本离群点, 采用粒子群算法优化支持向量机分类参数, 进而提高支持向量机的分类性能. 将该方法应用于信用风险评价中的结果表明, 相比于其他模型, 该方法分类精度更高.  相似文献   

18.
为了解决传统算法检测准确性低,复杂性高不适于电力大数据异常值检测的问题,通过密度峰值聚类算法研究了电力大数据异常值检测问题。分析了密度峰值聚类算法的聚类过程。按照聚类中心选择原则,通过相邻距离和密度的归一化乘积对聚类点的差异度进行衡量,按照差异度的统计特性与改变趋势选择最大的一组点当成聚类中心。按照z空间填充曲线与高维数据点z携带位置信息特性提出基于z的分布式密度峰值聚类算法,降低异常检测复杂性,以达到电力大数据异常值检测要求。采用优化后的密度峰值聚类算法对电力大数据异常值进行检测,在局部密度超过阈值,同时距离超过阈值的情况下,认为相应电力数据点为异常值。将基于距离的检测算法和基于密度的检测算法作为对比进行测试,结果表明:所提算法得到的异常电力数据点,和实际情况相符,和其他两种算法相比没有出现错检测和漏检测的情况。可见所提算法适于电力大数据异常值检测,且检测结果准确性高。  相似文献   

19.
In this paper, an adaptive spatial clustering method is presented for automatic brain MR image segmentation, which is based on a competitive learning algorithm – self-organizing map (SOM). We use a pattern recognition approach in terms of feature generation and classifier design. Firstly, a multi-dimensional feature vector is constructed using local spatial information. Then, an adaptive spatial growing hierarchical SOM (ASGHSOM) is proposed as the classifier, which is an extension of SOM, fusing multi-scale segmentation with the competitive learning clustering algorithm to overcome the problem of overlapping grey-scale intensities on boundary regions. Furthermore, an adaptive spatial distance is integrated with ASGHSOM, in which local spatial information is considered in the clustering process to reduce the noise effect and the classification ambiguity. Our proposed method is validated by extensive experiments using both simulated and real MR data with varying noise level, and is compared with the state-of-the-art algorithms.  相似文献   

20.
时空聚类(spatial-temporal density based spatial clustering of applications with noise,ST-DBSCAN)算法只能处理固定属性的时空数据,且其人为设定阈值的方法具有较大随机性会导致聚类结果不理想.基于ST-DBSCAN算法存在的不足,提出了一...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号