首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We review recent experiments showing that the cerebral neuroendocrine Light Green Cells (LGCs) of the freshwater snail, Lymnaea stagnalis, express a family of distinct though related molluscan insulin-related peptide (MIP) genes. The LGCs are involved in the regulation of a wide range of interrelated life processes associated with growth, (energy) metabolism and reproduction. We consider the mechanism of generation of diversity among MIPs, and present evidence that conditions with distinct effects on growth, metabolism and reproduction also can induce distinct patterns of expression of the MIP and schistosomin genes. The stimulus-dependent expression of multiple neuropeptide genes enormously increases the adaptive potential of a peptidergic neuron. We suggest that this contributes significantly to the information-handling capacity of the brain.  相似文献   

2.
We review recent experiments showing that the cerebral neuroendocrine Light Green Cells (LGCs) of the freshwater snail,Lymnaea stagnalis, express a family of distinct though related molluscan insulin-related peptide (MIP) genes. The LGCs are involved in the regulation of a wide range of interrelated life processes associated with growth, (energy) metabolism and reproduction. We consider the mechanism of generation of diversity among MIPs, and present evidence that conditions with distinct effects on growth, metabolism and reproduction also can induce distinct patterns of expression of the MIP and schistosomin genes. The stimulus-dependent expression of multiple neuropeptide genes enormously increases the adaptive potential of a peptidergic neuron. We suggest that this contributes significantly to the information-handling capacity of the brain.  相似文献   

3.
L Hiripi  K S Rózsa  T A Miller 《Experientia》1979,35(10):1287-1288
Proctolin at concentrations 10(-8)-10(-7) M elevated by 40% brain adenylate cyclase activity of adult Locusta migratoria migratoriodes R.F. In moulting individuals, proctolin caused a decrease in brain adenylate cyclase activity, and it proved to be ineffective in the larvae. Proctolin caused only a slight decrease on guanylate cyclase activity of the brain at every developmental stage.  相似文献   

4.
In the gastrointestinal tract, tachykinins are peptide neurotransmitters in nerve circuits that regulate intestinal motility, secretion, and vascular functions. Tachykinins also contribute to transmission from spinal afferents that innervate the gastrointestinal tract and have roles in the responses of the intestine to inflammation. Tachykinins coexist with acetylcholine, the primary transmitter of excitatory neurons innervating the muscle, and act as a co-neurotransmitter of excitatory neurons. Excitatory transmission is mediated through NK1 receptors (primarily on interstitial cells of Cajal) and NK2 receptors on the muscle. Tachykinins participate in slow excitatory transmission at neuro-neuronal synapses, through NK1 and NK3 receptors, in both ascending and descending pathways affecting motility. Activation of receptors (NK1 and NK2) on the epithelium causes fluid secretion. Tachykinin receptors on immune cells are activated during inflammation of the gut. Finally, tachykinins are released from the central terminals of gastrointestinal afferent neurons in the spinal cord, particularly in nociceptive pathways. Received 24 March 2007; received after revision 30 August 2007; accepted 14 September 2007  相似文献   

5.
Summary We are using the medicinal leech to study the neuronal basis of behavioral choice. In particular, we are recording from neurons, both extracellularly and intracellularly, in preparations that can express three different behaviors: the shortening reflex, crawling and swimming. We have found that particular mechanosensory neurons can elicit any of the behaviors, and that the movements are produced by just four sets of muscles, each controlled by a small number of motor neurons. Hence, there must be three different pattern-generating neuronal circuits, each of which can be activated by the same set of sensory neurons. We are studying how the choice is made among the three behaviors by recording, while one behavior is being performed, from neurons known to be involved in the initiation of the other two. We have found that an interneuron, cell 204, which is known to initiate and maintain swimming, is also active during shortening and crawling. The activity level in this interneuron can influence whether a mechanosensory stimulus produces shortening or swimming. The neuronal mechanisms by which this choice is normally effected awaits further elucidation of the circuits that elicit and generate shortening and crawling.  相似文献   

6.
Summary Proctolin at concentrations 10–8–10–7 M elevated by 40% brain adenylate cyclase activity of adultLocusta migratoria migratorioides R.F. In moulting individuals, proctolin caused a decrease in brain adenylate cyclase activity, and it proved to be ineffective in the larvae. Proctolin caused only a slight decrease on guanylate cyclase activity of the brain at every developmental stage.  相似文献   

7.
Effects of serotonin (5-HT) on cerebral cortical neurons were examined by patch clamp techniques. 5-HT produced a variety of responses such as outward (19/73 patches/neurons), slow inward (15/73 patches/neurons), fast inward (8/73 patches/neurons), and mixed currents (initially fast inward deflection followed by an outward response: 2/73 patches/neurons), with a latency of 12 sec, 15 sec, 0 sec, and 0 sec respectively, at a holding potential of −60 mV in whole-cell patches. The fast inward currents were again evoked by a selective 5-HT3 receptor agonist, 1-(m-chlorophenyl)-biguanide hydrochloride (CPBG). In the cell-attached patch clamp configuration, 5-HT inside the patch pipette elicited single channel currents with slope conductances of 42 pS and 132 pS (4/42 patches/neurons). CPBG inside the patch pipette evoked inward single channel currents with a lower slope conductance of 41 pS (3/23 patches/neurons). In contrast, application of 5-HT or a 5-HT2 receptor agonist, α-methyl-5-hydroxytryptamine-maleate, outside the patch pipette induced outward single channel currents with a major slope conductance of 140 pS (8/30 patches/neurons) or 135 pS (6/20 patches/neurons), respectively. These results indicate that the outward and fast inward currents may be mediated respectively by the 5-HT2 receptor, which is coupled to a G-protein, and by the 5-HT3 receptor, which contains the non-selective cation channel, and that the mixed type may be caused by both the 5-HT2 and 5-HT3 receptors. Received 27 September 1996; received after revision 4 November 1996; accepted 7 November 1996  相似文献   

8.
Kallmann’s syndrome, a neuronal migration defect   总被引:1,自引:0,他引:1  
Infertility and inability to smell are the phenotypical features of Kallmann’s syndrome (KS), a genetic disease which affects 1 in 10,000 males and 1 in 50,000 females, the majority of the cases being sporadic. The molecular pathogenesis of KS is complex but mainly referable to the impairment of olfactory axon development and of the migration of gonadotropin-releasing hormone (GnRH) neurons. Only two different genes have been identified so far as responsible for the disease: KAL1 and KAL2, encoding anosmin-1 and fibroblast growth factor receptor 1 (FGFR1), respectively. In this review we focus our attention on insights evoked by recent studies, which propose a new direct role for anosmin-1 in the migration GnRH neurons, and a fascinating hypothesis of interactions between anosmin-1 and FGFR1 systems. Received 23 December 2005; received after revision 31 May 2006; accepted 6 July 2006  相似文献   

9.
Summary Neurochemical and pharmacological experiments have raised the possibility that several neuropeptides including, vasoactive intestinal polypeptide (VIP), peptide histidine isoleucine amide (PHI), substance P, calcitonin gene-related peptide (CGRP), neurokinin A, cholecystokinin (CCK) and opioid peptides may be transmitters in afferent pathways to the pelvic viscera. These substances are widely distributed in: 1) nerve fibers in the pelvic organs, 2) visceral afferent neurons in the lumbosacral dorsal root ganglia and 3) at sites of afferent termination in the spinal cord. Double, staining immunocytochemical techniques have shown that more than one peptide can be localized in individual visceral afferent neurons and that neuronal excitatory (VIP, substance P, CCK) and inhibitory peptides (leucine enkephalin) can coexist in the same afferent cell. Studies with the neurotoxin, capsaicin, indicate that peptidergic afferent pathways are, involved in the initiation of central autonomic reflexes as well as peripheral axon reflexes which modulate smooth muscle activity, facilitate transmission in automatic ganglia and trigger local inflammatory responses.  相似文献   

10.
Neuropeptides in pelvic afferent pathways   总被引:2,自引:0,他引:2  
W C de Groat 《Experientia》1987,43(7):801-813
Neurochemical and pharmacological experiments have raised the possibility that several neuropeptides including, vasoactive intestinal polypeptide (VIP), peptide histidine isoleucine amide (PHI), substance P, calcitonin gene-related peptide (CGRP), neurokinin A, cholecystokinin (CCK) and opioid peptides may be transmitters in afferent pathways to the pelvic viscera. These substances are widely distributed in: 1) nerve fibers in the pelvic organs, 2) visceral afferent neurons in the lumbosacral dorsal root ganglia and 3) at sites of afferent termination in the spinal cord. Double staining immunocytochemical techniques have shown that more than one peptide can be localized in individual visceral afferent neurons and that neuronal excitatory (VIP, substance P, CCK) and inhibitory peptides (leucine enkephalin) can coexist in the same afferent cell. Studies with the neurotoxin, capsaicin, indicate that peptidergic afferent pathways are involved in the initiation of central autonomic reflexes as well as peripheral axon reflexes which modulate smooth muscle activity, facilitate transmission in automatic ganglia and trigger local inflammatory responses.  相似文献   

11.
Phoenixin-14 (PNX) is a newly identified peptide co-expressed in the hypothalamus with the anorexic and cardioactive Nesfatin-1. Like Nesfatin-1, PNX is able to cross the blood–brain barrier and this suggests a role in peripheral modulation. Preliminary mass spectrography data indicate that, in addition to the hypothalamus, PNX is present in the mammalian heart. This study aimed to quantify PNX expression in the rat heart, and to evaluate whether the peptide influences the myocardial function under basal condition and in the presence of ischemia/reperfusion (I/R). By ELISA the presence of PNX was detected in both hypothalamus and heart. In plasma of normal, but not of obese rats, the peptide concentrations increased after meal. Exposure of the isolated and Langendorff perfused rat heart to exogenous PNX induces a reduction of contractility and relaxation, without effects on coronary pressure and heart rate. As revealed by immunoblotting, these effects were accompanied by an increase of Erk1/2, Akt and eNOS phosphorylation. PNX (EC50 dose), administered after ischemia, induced post-conditioning-like cardioprotection. This was revealed by a smaller infarct size and a better systolic recovery with respect to those detected on hearts exposed to I/R alone. The peptide also activates the cardioprotective RISK and SAFE cascades and inhibits apoptosis. These effects were also observed in the heart of obese rats. Our data provide a first evidence on the peripheral activity of PNX and on its direct cardiomodulatory and cardioprotective role under both normal conditions and in the presence of metabolic disorders.  相似文献   

12.
二进神经网络采用线性分类,是结构简单又易于实现的一类神经网络,在许多应用领域中都有重要研究价值.对于单隐层二进神经网络,目前隐层规模的确定问题仍然没有明确的研究结论.本文在研究隐层规模问题的过程中,提出了布尔空间的最多孤立样本问题.在二进神经网络隐层神经元各自表达一个"与"关系,所有隐层神经元通过输出元形成"或"关系的情况下,证明了实现最多孤立样本问题需2n?1个隐层神经元.更重要的是,指出了n元奇偶校验问题和最多孤立样本结构的等价性.进一步地,通过引入隐层抑制神经元将隐元数目降为n,说明了抑制神经元在二进神经网络中的重要作用.最后,在Hamming球与SP函数的基础上,揭示出抑制神经元和n元奇偶校验问题的逻辑关系,并给出了奇偶校验问题的逻辑式表达.  相似文献   

13.
The AD7c-NTP gene is over-expressed in brains with Alzheimer's disease (AD), and increased levels of the corresponding protein are detectable in cortical neurons, brain tissue extracts, cerebrospinal fluid, and urine beginning early in the course of AD neurodegeneration. In the present study, we utilized a novel method to transfect post-mitotic primary neuronal cell cultures, and demonstrated that over-expression of the AD7c-NTP gene causes cell death and neuritic sprouting, two prominent abnormalities associated with AD. These results provide further evidence that aberrantly increas-ed AD7c-NTP expression may have a role in AD-type neurodegeneration. In addition, we demonstrate that primary post-mitotic neurons can be efficiently transfected with conventional recombinant plasmid DNA to evaluate the effects of gene over-expression in relevant in vitro models. Received 31 January 2001; received after revision 31 March 2001; accepted 4 April 2001  相似文献   

14.
The possible promoting effect of streptozotocin (STZ; 65 mg/kg body weight, intraperitoneal)-induced diabetes during 2-acetylaminofluorene (2-AAF; 0.04% in basal diet)-initiated hepatocarcinogenesis and modulatory effect of 1α,25-dihydroxyvitamin D3 (VD3; 0.3 μg/0.1 ml in propylene glycol, per os) were investigated by monitoring chromosomal aberrations (CAs), DNA strand breaks and specific DNA adducts in rat liver. VD3 treatment (twice a week) was started 4 weeks before the 2-AAF regimen and continued throughout the study. Aberrant metaphase chromosomes were counted from the regenerating hepatocytes 15, 30 or 45 weeks after STZ injection, while DNA strand break and adduct assays were performed 45 days post-STZ treatment. Dietary exposure to 2-AAF elicited a substantial increase in CAs and elevated the extent of DNA strand breaks and formation of N-(deoxyguanosin-8-yl)-2-aminofluorene. A promoting effect of STZ was evident from CAs coupled with DNA strand break analysis. VD3 treatment substantially reducted 2-AAF+STZ-induced CAs as well as DNA strand breaks and adducts. Thus, VD3 appears to be effective in suppressing liver-specific early chromosomal as well as DNA damage during the process of rat hepatocarcinogenesis initiated with 2-AAF and promoted by STZ contributing to its promise as a cancer chemotherapeutic agent. Received 27 April 2001; accepted 22 May 2001  相似文献   

15.
Comparison of adjacent serial sections of the tubero-infundibular region of Human adult hypothalamus demonstrates that the same perikarya, axons and terminals are stained both with anti-beta-endorphin and anti 17-39 ACTH antisera. The most immunoreactive of these neurons are also revealed with anti alpha-endorphin, anti alpha and beta-MSH, anti-1-24 ACTH and anti beta-LPH. These results suggest that neurons of the infundibular nucleus can store and probably secrete peptide similar to propiocortin or fragment(s) of this molecule.  相似文献   

16.
17.
Central nervous system stem cells in the embryo and adult   总被引:19,自引:0,他引:19  
The central nervous system is generated from neural stem cells during embryonic development. These cells are multipotent and generate neurons, astrocytes and oligodendrocytes. The last few years it has been found that there are populations of stem cells also in the adult mammalian brain and spinal cord. In this paper, we review the recent development in the field of embryonic and adult neural stem cells. Received 26 March 1998; received after revision 27 April 1998; accepted 27 April 1998  相似文献   

18.
The heart is regarded as an endocrine organ as well as a pump for circulation, since atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were discovered in cardiomyocytes to be secreted as hormones. Both ANP and BNP bind to their receptors expressed on remote organs, such as kidneys and blood vessels; therefore, the heart controls the circulation by pumping blood and by secreting endocrine peptides. Cardiomyocytes secrete other peptides besides natriuretic peptides. Although most of such cardiomyocyte-derived peptides act on the heart in autocrine/paracrine fashions, several peptides target remote organs. In this review, to overview current knowledge of endocrine properties of the heart, we focus on cardiomyocyte-derived peptides (cardiomyokines) that act on the remote organs as well as the heart. Cardiomyokines act on remote organs to regulate cardiovascular homeostasis, systemic metabolism, and inflammation. Therefore, through its endocrine function, the heart can maintain physiological conditions and prevent organ damage under pathological conditions.  相似文献   

19.
Summary Morphologic analysis of nine hypothalamic areas revealed significant decreases in the number of neurons per unit area in the ventral medial and arcuate nuclei. These data suggest that altered neuron numbers in the VMW and perhaps the ARC may participate in the well documented reductions in endocrine and neuroendocrine function observed in aging rats.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号