首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
多目标粒子群优化算法研究   总被引:1,自引:0,他引:1  
在过去的十多年,粒子群算法对多目标优化问题的应用研究取得了较大的进展.本文首先描述多目标粒子群优化算法(MOPSO)的基本流程,然后从算法设计与应用等方面回顾MOPSO的研究进展,最后对该算法未来的研究进行了分析和展望.  相似文献   

2.
提出了一种基于密度聚类的领导粒子选择策略的多目标粒子群优化算法。首先,将粒子进行分类;然后,对外部档案采用改进的循环拥挤距离排序,并将高斯变异引入到进化种群,在保持具有全局搜索能力的同时,也避免了陷入局部最优。对WFG系列测试函数的仿真结果表明,与经典多目标优化算法相比,本文算法在解的收敛性和多样性等方面有显著的提升。  相似文献   

3.
多目标最优化的粒子群算法   总被引:8,自引:0,他引:8  
粒子群算法是一种新出现的进化算法,相对其它进化算法,它收敛速度快、规则简单、易于编程实现.采用粒子群算法对资产投资的多目标问题进行优化,解决了传统方法难以解决的问题.数值实例表明,采用该算法能对资产投资问题做出优化组合决策.  相似文献   

4.
基于多目标粒子群优化算法的输电网规划   总被引:3,自引:0,他引:3  
输电网规划是一个离散型、非线性、多目标的混合整数规划问题,难于求解.提出一种多目标粒子群优化算法用来求解输电网规划问题.在输电网规划模型中考虑了建设投资费用、运行费用及网损费用等3方面的因素.多目标粒子群优化算法基于Pareto支配关系来更新粒子的个体极值,并采用了精英归档技术,粒子的全局极值由档案库中的非劣解提供.使用Matlab7.1对Garver-6节点系统进行仿真计算,结果表明:与传统的单目标遗传算法相比,多目标粒子群优化算法获得的规划方案总费用更低,该方法可以提高输电网规划的经济性水平.  相似文献   

5.
基于密集距离的多目标粒子群优化算法   总被引:3,自引:2,他引:1  
设计出基于密集距离的多目标粒子群优化算法(CMPSO),该算法根据密集距离大小按轮盘赌方式为每个粒子从外部档案选取全局最好位置并采用基于密集距离的方法对外部档案进行维护.将算法应用于3个复杂的测试实例,并与强度Pareto进化算法2等算法进行比较,计算结果表明CMPSO具有良好的连续优化能力.  相似文献   

6.
一种离散型多目标粒子群优化算法   总被引:1,自引:0,他引:1  
为获得更好的非劣前端,提出一种离散型多目标粒子群优化算法。该算法根据离散型多目标优化问题的特点,将种群分成多个子种群,在各个子种群中利用表现型共享的适应度函数选择每个子种群的最优粒子。通过多个最优粒子的引导,使整个种群分布更均匀,避免陷入局部最优,保证了解的多样性。实验表明了该算法的有效性。  相似文献   

7.
基于表现型共享的多目标粒子群算法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
在多目标粒子群算法中,粒子的飞行由自身的最优位置和指导粒子决定,如何定义适应度选出合适的指导粒子,指导搜索过程向全局Pareto最优区域飞行,并保持种群在最优前端的多样性是算法的关键问题.针对上述问题,构造了同时考虑粒子的Pareto占优情况和目标空间邻近密集度的表现型共享适应度函数,在此基础上提出一个基于表现型共享的多目标粒子群优化算法(MOPSO).为了验证算法的有效性,采用占优等级指标来分析近似解集的占优情况,并采用EPS、HYP和R2指标来衡量解集的分布情况.实验结果表明,算法具有较强的全局搜索能力,能在较小的计算代价下获得较好的Pareto前端近似.  相似文献   

8.
为了利用粒子群优化算法解决作业车间调度问题,提出了将调度问题转化为连续优化问题的有效策略;设计了Pareto档案粒子群算法(PAPSO),该算法将档案维护和全局最好位置选取结合在一起,在档案维护过程中为每个粒子选取全局最好位置;给出了变异与PAPSO的结合新策略;最后将PAPSO和带变异的PAPSO应用于15个调度实例,以最小化总拖后时间和最大完成时间,与强度Pareto进化算法2等算法进行比较,结果验证了PAP—SO在作业车间调度方面的良好性能.  相似文献   

9.
丁雷  段平 《中国工程科学》2010,12(2):101-107
针对铅锌烧结过程综合透气性、烧结终点的优化具有强非线性、计算复杂等特点,提出了一种有效的多目标粒子群协同优化算法。首先,建立了有综合透气性、烧结终点两个目标的优化模型。接着,通过改进的约束比较方法、粒子极值选取方法,以及利用不同的粒子群来分别优化相应的变量,提出了一种改进的多目标粒子群协同优化算法。最后,利用提出的多目标优化算法进行综合透气性、烧结终点的优化。仿真结果表明,所提出的多目标优化算法能较好地解决综合透气性、烧结终点的优化问题。  相似文献   

10.
为解决中点钳位型三电平牵引逆变器存在的中点电位不平衡以及由此而引起的输出电流谐波无法同时得到有效控制问题,提出了一种基于粒子群算法的牵引逆变器多目标优化控制策略。首先建立谐波抑制和中点电位平衡控制变量的数学模型;然后以输出电流谐波总畸变率最小为目标,以中点电位波动幅值尽可能小为约束条件,采用罚函数法构建了多目标优化模型。通过粒子群算法进行优化求解,实现在有效抑制输出电流谐波的同时最大程度降低中点电位波动幅值。仿真和实验结果验证了所提多目标优化控制策略的有效性。  相似文献   

11.
当前不确定动态多目标优化方法通常将多目标问题转换成单目标问题,将其它目标看作约束条件,仅可得到单个解,无法有效体现不确定多目标之间的关系,导致得到的解质量低。为此,提出一种新的基于粒子群算法的不确定动态多目标优化方法,给出不确定动态多目标优化问题的数学描述,介绍了粒子群算法,针对粒子群算法容易陷入局部最优的弊端,引入动态变异算子对其进行改进,通过改进的位置更新公式实现粒子群算法位置的自适应更新,给出解决不确定多目标优化问题的详细过程,在此基础上,通过分段线性函数参数化实现不确定动态多目标优化。实验结果表明,所提方法搜索能力强,采用所提方法得到的解与真实解最相近,质量最高。  相似文献   

12.
针对高斯粒子滤波(GPF)在多峰高斯假设条件下不能满足贝叶斯估计精度的问题,提出一种基于粒子群优化的高斯粒子滤波算法(PSO-GPF).该算法用粒子群优化算法更新高斯建议分布的参数,解决粒子退化和多峰高斯下的粒子精度问题.同时,带压缩因子的粒子群优化算法能有效平衡粒子的全局探测与局部开采.实验结果表明,新算法的滤波精度比高斯粒子滤波精度平均可提高93.9%,具有更高的稳定性.  相似文献   

13.
针对常规动态聚类方法对初始聚类中心的敏感性和容易陷入局部最优的缺点等问题,提出了基于二阶段微粒群优化模糊C-均值算法(TPSOFCM),并将此算法与现有的模糊C-均值聚类算法和基于多阶段的模糊C-均值算法进行比较。该算法对Iris数据进行聚类,计算结果表明:该算法有较好的全局收敛性,不仅能有效地克服传统的模糊C-均值算法易陷入局部最优解的缺点,而且全局收敛能力优于模糊C-均值聚类算法和基于多阶段的模糊C-均值算法。  相似文献   

14.
基于多目标粒子群优化的服务选择算法   总被引:3,自引:0,他引:3  
基于多目标粒子群优化算法提出一种高效的服务选择算法(MOPSOSS).首先将服务选择问题建模为带QoS约束的多目标组合优化问题;其次,根据支配的概念构造远小于原子服务集的新子服务集;最后基于多目标粒子群优化算法求解由新子服务集构成的服务选择问题,从而获得一组满足约束的pareto最优解.理论分析表明,MOPSOSS能正确、高效地求出原问题的全局最优解.与遗传算法(GA)的对比结果表明当问题规模大于150时,MOPSOSS的平均运行时间仅为GA的7%,求出的解的个数是GA的1.15倍,75%的解能支配GA求出的解,分布广度是GA的1.5倍.随着约束强度的增加,MOPSOSS的平均运行时间减少,而解的质量并无显著下降.与GA相比,MOPSOSS能用更短的时间求出更多高质量的解.  相似文献   

15.
针对结晶器出口温度和液位控制问题,提出了一种基于改进的偏好多目标粒子群优化的非线性预测控制算法(IMPSO-NPC)。改进的偏好多目标粒子群优化算法(IP-MPSO)将参考点偏好算法和参考区域偏好算法融合在一起,在参考点和参考区移动过程中动态调整参考区,控制解集的偏好范围。另外,为了选取粒子群全局最优粒子,提出一种球扇占优的策略,提高了粒子群的搜索能力。将改进算法应用于结晶器的控制过程,仿真结果证明了其有效性和可行性。  相似文献   

16.
域名解析作为网络建立连接的第一个步骤,对恶意域名进行快速识别是阻断异常网络行为的有效措施。本研究利用机器学习和随机搜索算法,提出了一种基于SVM-RFE和粒子群优化算法的恶意域名检测模型。分析域名字符特征、解析特征和注册特征,使用SVM-RFE算法进行特征权重排序,通过优化的粒子群算法确定最佳SVM参数和特征选择。实验证明该检测模型具有较好的效率和准确度。  相似文献   

17.
粒子群算法是一种粒子群在全空间随机搜索的非线性反演方法,具有易于实现的优点,已在大地电磁(MT)反演得到了广泛应用,但其存在容易陷入局部最优解的缺点,在二维反演中应用较少且效果不好。本文提出了一种改进的优化粒子群算法,整个进化过程引入了局部进化,并且添加收缩因子和惯性权重参数,来改善该算法容易陷入局部最优解的缺点。最后将改进算法应用于二维MT反演,反演时加入核函数,结果表明改进粒子群算法在过早收敛问题上有明显改善,反演异常体位置也与实际模型吻合较好。因此,本文改进的粒子群优化算法提高了MT反演精度,为矿产资源勘探开发提供了理论基础。  相似文献   

18.
针对高比例新能源渗透背景下的常规AGC机组和新能源AGC机组协调控制问题,提出了基于"两个细则"的风光水火多电源AGC多目标协调优化方法,该方法在确保电网调频经济性的同时兼顾了电网的调频质量和网架功率传输能力。基于某地区长期AGC历史统计数据,分析了不同类型机组的调频特性,计算其调频指标;基于华中电网"两个细则"的要求,以电网的调频成本和网损成本、调频速度和调频精度为目标,建立了含风光水火的多目标AGC有功协调优化模型;结合某内陆地区网架结构和AGC数据,采用多目标粒子群算法进行模型求解,得到了各个AGC场站的有功出力,进而验证了文中提出方法的有效性。  相似文献   

19.
Apical-dominant particle swarm optimization   总被引:1,自引:0,他引:1  
Particle swarm optimization (PSO) is a new stochastic population-based search methodology by simulating the animal social behaviors such as birds flocking and fish schooling. Many improvements have been proposed within the framework of this biological assumption. However, in this paper, the search pattern of PSO is used to model the branch growth process of natural plants. It provides a different potential manner from artificialplant. To illustrate the effectiveness of this new model, apical dominance phenomenon is introduced to construct a novel variant by emphasizing the influence of the phototaxis. In this improvement, the population is divided into three different kinds of buds associated with their performances. Furthermore, a mutation strategy is applied to enhance the ability escaping from a local optimum. Simulation results demonstrate good performance of the new method when solving high-dimensional multi-modal problems.  相似文献   

20.
胡旺等人在2007年提出了一种简化粒子群优化算法,基于他的思想,我们给出一个简化自适应粒子群优化算法,在该算法中权重采用标准粒子群算法的自适应权重公式,但是权重的最大值根据解的进化情况不断更新,解改进的成功率的越大权重最大值增大,反之,解改进的成功率的越小权重最大值减小.最后,通过几个典型例子对给出的算法进行检验并与其...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号