首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 359 毫秒
1.
真核生物DNA聚合酶δ的研究现状   总被引:2,自引:3,他引:2  
DNA聚合酶δ(DNA polymerase δ)是真核生物DNA复制的主要复制酶,同时还参与DNA修复,对保持真核生物基因组的结构完整性和遗传稳定性具有重要作用.对DNA聚合酶δ蛋白功能活性及其基因表达机制的研究因受技术上的限制而未能深入研究.由于其重要的生物学功能,目前引起人们的更多关注和重视.文中就该酶的生物学功能、亚基组成、核心酶的分子表达调控以及与其他蛋白相互作用等方面对国内外DNA聚合酶δ的研究进行简要综述.  相似文献   

2.
在有丝分裂期的细胞中,染色体驱动蛋白KIF4A的染色体定位对细胞分裂进程影响显著,KIF4A的羧基端尾部是参与调控其染色体定位的主要结构.为了探究KIF4A结合DNA的特性,利用细菌表达KIF4A尾部功能域蛋白KIF4A-C278,并应用纯化后的蛋白分别与线性双螺旋DNA和超螺旋DNA结合.实验结果显示,KIF4A-C...  相似文献   

3.
染色体经DNA特异染色后,观察到其最高层次结构是螺旋的,而次级结构存在着放射环结构,即由直径为25~30nm的DNA纤丝放射状折叠排列成约250nm左右的染色单体丝;染色单体丝进一步螺旋形成中期染色体结构。这些观察结果和染色体的螺旋与放射环共存模型非常相似。这个模型应更接近于洋葱染色体真实结构。  相似文献   

4.
真核生物基因组中存在着大量的非编码序列,这些"Junk"DNA所发挥的重要功能正逐渐被人们所了解.本文综述了真核生物基因组中"Junk"DNA的构成和功能,并对未来进一步的研究作了展望.  相似文献   

5.
DNA三角形纳米结构的拐角是由DNA同源重组中的Holliday基序构成的.为进一步研究DNA三角形纳米结构,对其拐角截断并引入黏性末端到其基序上,使其能够自组装成为一种新型DNA纳米结构.对该DNA纳米结构进行凝胶电泳分析,发现其迁移速率要比DNA三角形迁移速率小.在这种没有扭曲张力的情况下,该基序只是自组装形成一个二聚体结构,而不是三聚体结构(DNA三角形).对该新型DNA纳米结构进行结晶,并合成得到了硒代核酸,同时也得到了较高质量的硒代单晶,以帮助相位测定.希望对其晶体结构进行测定研究,以便发现该新型DNA纳米二聚体结构和该Holliday基序组装的三维结构,从而更深入地认识DNA纳米材料的组装规律.  相似文献   

6.
建立了一种高效制备莲藕伸展DNA纤维的方法,为莲藕基因组及染色体结构等方面的研究提供了技术支撑.  相似文献   

7.
宋楠萌  桑建利  徐恒 《自然科学进展》2006,16(10):1201-1209
增殖细胞核抗原(PCNA)是真核生物复制复合体的核心成分,具有特殊的环状三级结构. 作为真核细胞DNA聚合酶δ的推动因子,与不同复制相关蛋白结合,协调DNA复制过程. 同时PCNA还作为功能转换因子,通过不同调控方式与多种细胞因子作用,参与了DNA损伤修复、细胞周期调控及凋亡等许多重要的细胞事件. 另外作为细胞增殖的指标,PCNA与肿瘤等细胞增殖性疾病的发生和发展存在相关性,因此在临床上对PCNA的深入研究有重要意义. 文中就PCNA的“功能性”结构及其在不同细胞事件中的功能转换(Function Switch)进行简要综述.  相似文献   

8.
减数分裂是真核生物有性生殖所必需,前期研究表明拟南芥DNA复制因子RFC1在减数分裂重组中具有重要作用,但其同源基因在其他物种中的减数分裂或其他功能还未有报道.为了检验番茄RFC1在减数分裂中的功能,我们建立了减数分裂特异RFC1~(RNAi)转基因番茄,发现其花粉活性显著降低,而且减数分裂异常.利用DAPI染色观察染色体形态,发现RFC1~(RNAi)减数分裂细胞在终变期和中期Ⅰ形成多价体,表明重组异常.DNA双链断裂指示蛋白γH2AX在RFC1~(RNAi)粗线期染色体上分布的保留滞后,进一步支持RFC1~(RNAi)中的重组异常.拟南芥和番茄分别属于真双子叶植物中的两个不同大支,蔷薇类和菊类,因此本文的结果也表明DNA合成基因RFC1在进化距离很远的不同植物物种中的功能相对保守.  相似文献   

9.
着丝粒的关键作用是保证细胞减数分裂和有丝分裂的顺利进行,保证生物的遗传.近年来随着对多个物种的着丝粒测序之后对着丝粒的功能提出了很多相互矛盾的假说.本文阐述了低等真核生物的着丝粒没有重复序列而高等真核生物的着丝粒具有大量的重复序列,并且简述了各物种着丝粒的组成和各类与组蛋白H3、核仁、着丝粒DNA序列及DNA的高级结构相关的着丝粒功能模型.  相似文献   

10.
2009年度诺贝尔生理学或医学奖在瑞典卡罗林斯卡医学院揭晓,美国加利福尼亚旧金山大学的Elizabeth H. Blackburn、美国巴尔的摩约翰·霍普金斯医学院的Carol W. Greider和美国哈佛医学院的Jack W. Szostak获得该奖,以表彰他们发现了端粒和端粒酶保护染色体的机制。端粒是染色体末端由DNA重复序列组成的一种特殊结构,具有维持染色体结构稳定性的功能,会随染色体复制与细胞分裂而缩短。端粒酶作用于端粒,依靠自身RNA模板合成端粒DNA,维持端粒的长度与结构完整。端粒和端粒酶的发现解释了生物学中长期未解决的染色体末端复制问题,推动了生物学和生物医学相关领域的发展,为研究衰老、与衰老相关的疾病和肿瘤发生发展的分子机制提供了新的思路。  相似文献   

11.
During chromosome duplication the parental DNA molecule becomes overwound, or positively supercoiled, in the region ahead of the advancing replication fork. To allow fork progression, this superhelical tension has to be removed by topoisomerases, which operate by introducing transient DNA breaks. Positive supercoiling can also be diminished if the advancing fork rotates along the DNA helix, but then sister chromatid intertwinings form in its wake. Despite these insights it remains largely unknown how replication-induced superhelical stress is dealt with on linear, eukaryotic chromosomes. Here we show that this stress increases with the length of Saccharomyces cerevisiae chromosomes. This highlights the possibility that superhelical tension is handled on a chromosome scale and not only within topologically closed chromosomal domains as the current view predicts. We found that inhibition of type I topoisomerases leads to a late replication delay of longer, but not shorter, chromosomes. This phenotype is also displayed by cells expressing mutated versions of the cohesin- and condensin-related Smc5/6 complex. The frequency of chromosomal association sites of the Smc5/6 complex increases in response to chromosome lengthening, chromosome circularization, or inactivation of topoisomerase 2, all having the potential to increase the number of sister chromatid intertwinings. Furthermore, non-functional Smc6 reduces the accumulation of intertwined sister plasmids after one round of replication in the absence of topoisomerase 2 function. Our results demonstrate that the length of a chromosome influences the need of superhelical tension release in Saccharomyces cerevisiae, and allow us to propose a model where the Smc5/6 complex facilitates fork rotation by sequestering nascent chromatid intertwinings that form behind the replication machinery.  相似文献   

12.
肿瘤研究新视点——MGMT   总被引:5,自引:0,他引:5  
MGMT作为一种重要的DNA修复酶对于保护细胞免受环境中的致癌物质和(或)化疗物引起的基因毒起着关键作用,因此在细胞对环境致癌物的易感性与肿瘤对化学药物的耐药性等研究领域,MGMT正受到越来越多研究者的关注。化疗药物作用的有限性一直是困扰肿瘤临床治疗的一大难题,许多人把希望寄托在肿瘤的早期发现与预防上,MGMT作为一种重要的DNA修复酶起着保护细胞免受基因毒的重要作用,利用这一性质,通过检测组织中MGMT的活性水平可以帮助我们预测正常细胞的突变性与肿瘤细胞的耐药性,为肿瘤的早期预防和确定化疗方案提供依据,本文综述了MGMT的一般性质、作用机制和临床意义。  相似文献   

13.
To prevent the damage caused by DNA strand breaks, eukaryotic cells have evolved a series of highly conserved DNA repair mechanisms. The ubiquitously expressed acetyltransferase, Tip60, plays a central role in ATM (ataxia-telangiectasia mutated) activation which is involved in DNA repair. Recent work uncovered a new mechanism of ATM activation mediated by Tip60 and demonstrated that histone methylation, specifically, trimethylation of histone H3, is a key factor in the process. Here, we review the current understanding of how Tip60 is activated and how it activates ATM in response to DNA damage.  相似文献   

14.
Proliferating cell nuclear antigen (PCNA) is the core component of replication complex in eukaryote. As a processive factor of DNA polymerase delta, PCNA coordinates the replication process by interacting with various replication proteins. PCNA appears to play an essential role in many cell events, such as DNA damage repair, cell cycle regulation, and apoptosis, through the coordination or organization of different partners. PCNA is an essential factor in cell proliferation, and has clinical significance in tumor research. In this article we review the functional structure of PCNA, which acts as a function switch in different cell events.  相似文献   

15.
Proliferating cell nuclear antigen (PCNA) is the core component of replication complex in eukaryote. As a processive factor of DNA polymerase delta, PCNA coordinates the replication process by interacting with various replication proteins. PCNA appears to play an essential role in many cell events, such as DNA damage repair, cell cycle regulation, and apoptosis, through the coordination or organization of different partners. PCNA is an essential factor in cell proliferation, and has clinical significance in tumor research. In this article we review the functional structure of PCNA, which acts as a function switch in different cell events.  相似文献   

16.
Banerjee A  Yang W  Karplus M  Verdine GL 《Nature》2005,434(7033):612-618
How DNA repair proteins distinguish between the rare sites of damage and the vast expanse of normal DNA is poorly understood. Recognizing the mutagenic lesion 8-oxoguanine (oxoG) represents an especially formidable challenge, because this oxidized nucleobase differs by only two atoms from its normal counterpart, guanine (G). Here we report the use of a covalent trapping strategy to capture a human oxoG repair protein, 8-oxoguanine DNA glycosylase I (hOGG1), in the act of interrogating normal DNA. The X-ray structure of the trapped complex features a target G nucleobase extruded from the DNA helix but denied insertion into the lesion recognition pocket of the enzyme. Free energy difference calculations show that both attractive and repulsive interactions have an important role in the preferential binding of oxoG compared with G to the active site. The structure reveals a remarkably effective gate-keeping strategy for lesion discrimination and suggests a mechanism for oxoG insertion into the hOGG1 active site.  相似文献   

17.
Frequent chromosomal translocations induced by DNA double-strand breaks   总被引:40,自引:0,他引:40  
Richardson C  Jasin M 《Nature》2000,405(6787):697-700
The faithful repair of DNA damage such as chromosomal double-strand breaks (DSBs) is crucial for genomic integrity. Aberrant repair of these lesions can result in chromosomal rearrangements, including translocations, which are associated with numerous tumours. Models predict that some translocations arise from DSB-induced recombination in differentiating lymphoid cell types or from aberrant repair of DNA damage induced by irradiation or other agents; however, a genetic system to study the aetiology of these events has been lacking. Here we use a mouse embryonic stem cell system to examine the role of DNA damage on the formation of translocations. We find that two DSBs, each on different chromosomes, are sufficient to promote frequent reciprocal translocations. The results are in striking contrast with interchromosomal repair of a single DSB in an analogous system in which translocations are not recovered. Thus, while interchromosomal DNA repair does not result in genome instability per se, the presence of two DSBs in a single cell can alter the spectrum of repair products that are recovered.  相似文献   

18.
It is known that microRNAs (miRNAs) expression profile shows substantial changes in cells under DNA damage. Here, we did miRNA microarray and quantitative real-time PCR to comprehensively identify the differentially expressed miRNAs in colon cancer cell lines HCT116 p53+/+ and HCT116 p53-/-. Cluster analysis revealed a panel of differentially expressed miRNAs which are regulated by p53 and/or UV-C induced DNA damage. These altered miRNAs tend to be located in chromosomes 13, X and 17. Moreover, pathways enrichment analysis estimated that MAPK pathway, focal adheren pathway, p53 pathway and Wnt pathway were mediated by these miRNAs to exert their functions in DNA damage response. Additionally, we found that miR- 320a, one of the UV-C induced miRNAs, play a role in protecting cells from DNA damage. Taken together, our results show that miRNAs are dynamic regulated in p53- dependent or -independent manners in different cell contexts and different situations following DNA damage.  相似文献   

19.
肿瘤(癌症)是由于细胞在复制过程中,DNA损伤不能修复导致细胞凋亡或者细胞无限增殖而形成的。DNA在细胞中转录和翻译都会涉及蛋白与DNA的结合,肿瘤抑制蛋白也是参与这一过程的关键蛋白之一。然而,众多研究发现,肿瘤抑制蛋白p53具有识别和修复损伤DNA的效果,对于细胞的凋亡、基因的保护和避免癌症发生有着重要的意义。有研究表明,金属镁离子和锌离子可以增强p53蛋白的结构稳定性和p53-DNA的亲和力。因此,我们基于原子力显微镜(AFM),直观地呈现出p53蛋白与PBR322环状DNA相互作用的图像,同时发现p53蛋白可以使环状DNA自身形成聚集或者相交。但是,对于长度相当的5 000bp的线状DNA几乎没有这样的效果,而对于20 000bp DNA不会出现这样的现象。然而,在高浓度镁离子环境下,环状DNA会扭转成为麻花状,即形成超螺旋结构。这一现象,可为p53蛋白功能和作用机理研究提供指导,也为癌症治疗、癌症药物开发以及癌症检测方法提供启发。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号