首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
钙调神经磷酸酶在CaM,Mn~(2+)存在时的构象变化   总被引:1,自引:0,他引:1  
向本琼 《科学通报》1995,40(5):460-460
钙调神经磷酸酶(Calcineurin,CaN)是由A,B两亚基1:1组成的二聚体酶.A亚基是CaN的催化亚基,上有钙调素(CaM)、B亚基和金属离子结合位点.B亚基是调节亚基,上有4个Ca~(2+)结合位点,在维系酶的活性构象方面起着重要的作用.肖方祥等用Mn~(2+)作为Ca~(2+)探针进行了CaN,CaN+CaM结合Mn~(2+)的ESR研究,其结果表明,CaN上有2个Mn~(2+)结合位点,然而分离的A,B亚基上分别有2个、4个Mn~(2+)结合位点,CaN-CaM复合物  相似文献   

2.
凌启阆 《科学通报》1993,38(21):2005-2005
植物生长素参与植物生长和发育许多方面的调节,有关其调节机理的研究进展活跃。继Rayle(1970)的酸生长理论后,很多研究表明生长素的调节机制与Ca~(2+)紧密相关,Ca~(2+)在植物激素信号的传导中起着信使作用。钙调素(Calmodulin,CaM)是存在于所有真核细胞中的主要钙结合蛋白,参与动植物细胞过程中众多功能的调控。Raghothama等(1985)的研究表明,CaM与生长素导致的细胞伸长有关,Ca~(2+)的信使作用是通过CaM来实现的。  相似文献   

3.
徐友涵 《科学通报》1985,30(17):1348-1348
红细胞膜Ca~(2 )-Mg~(2 )-ATPase具有Ca~(2 )跨膜主动运转的功能,以维持胞内低Ca~(2 )浓度。目前已知该酶受钙调蛋白(CaM)的调节。CaM是广泛分布的一种钙结合蛋白,是非肌细胞主要的Ca~(2 )受体,它在调节各种依赖Ca~(2 )的细胞功能和酶体系中起重要作用。 CaM活化的环核苷酸磷酸二脂酶、红细胞膜Ca~(2 )-Mg~(2 )-ATPase活性可被多种CaM拮  相似文献   

4.
孙大业 《科学通报》1987,32(24):1887-1887
作为胞内信使的钙离子,在与Calmodulin(钙调素,简称CaM)结合后将其活化,从而调节着生物细胞内多种酶的活性和生理过程。在植物方面,已证实Ca~(2+)·CaM系统至少调节着NAD激酶、Ca~(2+)·Mg~(2+)-ATP酶和NAD奎宁氧化还原酶,以及可能参与光合作用、细胞运动、植物激素反应等生理过程的调节。植物上已初步证实与Ca~(2+)·CaM调节有关的ATP  相似文献   

5.
张善荣 《科学通报》1993,38(19):1759-1759
乙二醇-双-(α-氨基乙基醚)四乙酸(EGTA)是一种Ca~(2+)高选择性螯合剂,结合Ca~(2+)能力比Mg~(2+)强10~6倍,被认为是钙结合蛋白钙结合位的理想配位模型。Ca(EGTA)的晶体结构虽已确定,但其溶液结构仍不清楚。考虑Ca~(2+)离子半径(0.99  相似文献   

6.
小麦细胞壁钙调素的研究初报   总被引:7,自引:2,他引:5  
叶正华 《科学通报》1988,33(8):624-624
在植物细胞内钙离子作为第二信使通过钙调素(Calmodulin,简称CaM)而起调节作用,已有许多研究证实和评述。植物体内大部分的Ca~(2+)是存在于细胞壁中,Ca~(2+)和细胞壁的相互作用发挥着重要的生理功能,如细胞壁结构的稳定性,酸性生长,离子交换特性,向地性,细胞壁酶活性的调节等。在植物细胞壁中Ca~(2+)的功能是否通过CaM起调节作用,目  相似文献   

7.
杨小毅  范高峰  黄有国  杨福愉 《科学通报》1996,41(12):1131-1134
在正常生理状态下,真核细胞内Ca~(2+)浓度为10~(-7)~10~(-6)mol/L,细胞外侧为10~(-3)mol/L,即细胞膜的两侧存在1000~10000倍的跨膜Ca~(2+)梯差。当细胞外信息跨膜传递时细胞外Ca~(2+)内流,胞浆中的Ca~(2+)浓度升高,细胞膜两侧的跨膜Ca~(2+)梯差降低约10倍,即膜内外两侧的跨膜Ca~(2+)梯差为100倍;而信息传递完成后胞浆中的Ca~(2+)会通过质膜上的Ca~(2+)-ATP酶或Na~+-Ca~(2+)交换运出细胞外以维持膜两侧合适的跨膜Ca~(2+)梯差。因此,细胞膜两侧的跨膜Ca~(2+)梯差在维持细胞正常功能中具有重要的生理意义。但这种跨膜Ca~(2+)梯差对膜结合蛋白,尤其是对参与构成信息跨膜转导体系的膜蛋白的结构与功能及其相互作用的影响尚未引起足够的重视。  相似文献   

8.
杨福愉  屠亚平 《科学通报》1991,36(6):478-479
大多数细胞具有明显的内外Ca~(2+)浓度梯差,一般细胞内Ca~(2+)浓度为10~(-7)—10~(-6)mol/L,细胞外则为10~(-3)mol/L.换言之,细胞内、外Ca~(2+)浓度梯差约为1000—10000倍.通过调控机理细胞内Ca~(2+)的浓度经常保持在一个恒定的低水平,否则会引起细胞功能的一系列异常变化.但这种跨膜Ca~(2+)浓度梯差对跨膜蛋白的构象与活性究竟有什  相似文献   

9.
蔡英年 《科学通报》1987,32(5):380-380
缺氧性肺动脉高压的形成机理目前尚不清楚。基于钙离子(Cd~(2+))在平滑肌兴奋-收缩耦联中的重要作用,有人推测缺氧性肺血管收缩很可能是缺氧促进细胞外钙的跨膜内流,影响细胞膜的去极化,使细胞内[Ca~(2+)]增加,从而使血管平滑肌的收缩加强。作为Ca~(2+)受体的钙调蛋白(Calmodulin,CaM)可能介导了这一效应。但至今尚未看到直接测定缺氧动物  相似文献   

10.
陈鑫阳 《科学通报》1992,37(1):67-67
自从在动物及植物中发现Ca~(2+)的受体——钙调素(CaM)之后,钙与钙调素作为第二信使系统受到极为广泛的重视。在动物方面,由于它比cAMP调节更多的酶和细胞功能,甚至调节着cAMP信使本身,其重要性已在cAMP之上;而在植物中,可以认为它是目前唯一已被确认的第二信使系统。对CaM结构功能进行的大量研究中,发现植物中CaM在  相似文献   

11.
孟祥兵 《科学通报》1994,39(11):1046-1046
钙调神经磷酸酶是哺乳动物脑内含量极丰富的唯一依赖Ca~(2+)及钙调素的磷蛋白磷酸酶.该酶(calcineurin,CaN)在脑外组织如精子细胞、淋巴细胞及肌肉组织中也有分布,但含量远远低于脑.CaN由18kD Ca~(2+)结合的调节亚基和61kD钙调素结合的催化亚基组成.除可与Ca~(2+)结合外,该酶还可与Mn~(2+),Ni~(2+),Co~(2+)等金属离子结合而影响其活性.CaN催化亚基已有至少5种cDNA同型物分别从大鼠、小鼠和人基因库中调出.这些基因型是从分别  相似文献   

12.
正常生理条件下,红细胞内Ca~(2+)浓度为10~(-6)mol/L,而血液中的Ca~(2+)浓度则约10~(-3)mol/L,因此红细胞膜两侧存在着1000倍的跨膜Ca~(2+)梯度.有报道在贫血病人的红细胞或老化的红细胞中,红细胞内的Ca~(2+)浓度大幅度上升,导致了跨膜Ca~(2+)梯度的下降.我们曾报道过一个合适的跨膜Ca~(2+)梯度可通过膜脂调节质膜腺苷酸环化酶、肌质网Ca~(2+)-ATP酶的构象和活力.最近,我们又初步报道了一个合适的跨膜Ca~(2+)梯度是红细胞带3蛋白(Band-3)表现较高阴离子转运活力所必须的.那么这种调节作用是否也是通过膜脂进行的呢?众所周  相似文献   

13.
卢坤平 《科学通报》1988,33(10):800-800
在动脉粥样硬化和高血压的发病过程中,常伴有血管平滑肌细胞的增殖。关于Ca~(2+)和CaM(钙调素)与平滑肌细胞增殖的关系尚未见文献报道。实验研究了主动脉平滑肌  相似文献   

14.
魏群  卢景芬 《科学通报》1992,37(22):2112-2113
钙调神经磷酸酶(calcineurin,CaN)是一种依赖于Ca~(2+)/CaM的磷蛋白磷酸酶,由催化亚基A和调节亚基B 1:1组成。其活力  相似文献   

15.
杨福愉 《科学通报》1995,40(3):287-287
正常生理条件下,红细胞内Ca~(2+)浓度为10~(-6)mol/L,而血液中的Ca~(2+)浓度则约10~(-3)mol/L,因此在红细胞膜两侧存在着约1000倍的跨膜Ca~(2+)梯度.我们曾报道过跨膜Ca~(2+)梯度对通过膜脂调节质膜腺苷酸环化酶、肌质网膜Ca~(2+)-ATP酶构象和活力的重要性.红细胞骨架(Cell skeleton)是维持红细胞形态和功能的基础.它由两个结构单元组成——细胞膜和膜骨架(Membraneskeleton).  相似文献   

16.
竹红菌乙素对肌质网Ca~(2+)-ATP酶蛋白色氨酸荧光猝灭研究   总被引:1,自引:0,他引:1  
乐加昌 《科学通报》1995,40(1):76-76
肌质网Ca~(2+)-ATP酶是一种重要的膜蛋白酶,它在肌细胞的收缩舒张功能中起重要作用,因而其动力学行为被广泛地研究,但是有关结构与功能之间关系的直接实验数据仍然不足.为了从分子水平上阐明Ca~(2+)-ATP酶催化原理,1993年Ferrira用荧光猝灭方法首先观察了肌质网Ca~(2+)-ATP酶在加入Ca~(2+)前后分子构象的变化.由于作者使用的猝灭剂是分子氧,除了在测定工作中使用不方便之外,灵敏度也不够高.为此本文用竹红菌乙素作为肌质网Ca~(2+)-ATP酶荧光猝灭剂,分别测定了该酶在有钙或无钙的条件下荧光猝灭的情况,结果证明竹红菌乙素可以在稳态和瞬态的条件下观察到体系中有钙或无钙时的荧光猝灭常数变化的情况(即不同的K_q值);进而说明了竹红菌乙素作为肌质网蛋白荧光猝灭剂可以得到比氧更多的信息和许多其他优点.  相似文献   

17.
周捷 《科学通报》1995,40(23):2188-2188
钙调神经磷酸酶(Calcineurin,CaN,EC 3.1.3.16)是目前所知的唯一依赖于钙/钙调素的磷蛋白磷酸酶.CaN全酶分子量为80ku,大亚基A(61 ku)是催化亚基,小亚基B(19ku)是调节亚基并且与钙调素相似.CaN的活性受多种二价金属离子的调节,Mn~(2+),Ni~(2+)就可以强烈激活CaN.由于Mn~(2+),Ni~(2+)与Ca~(2+)在原子半径、电荷等性质上十分相似,因此,研究它们与CaN的相互作用对于揭示CaN的催化调控机理以及生物大分子高级结构方面具有重要意义.本室已经纯化了CaN,并且利用电子顺磁共振(ESR)方法研究了Mn~(2+)与全酶及A,B亚基的结合.本文将AAS(原子吸收光谱)与ESR两种方法结合,进一步研究了Mn~(2+),  相似文献   

18.
细胞外钙调素对花粉萌发和花粉管伸长的影响   总被引:8,自引:1,他引:8  
马力耕  徐小冬  崔素娟  孙大业 《科学通报》1997,42(24):2648-2652
钙调素(Calmodulin CaM)作为主要的多功能的Ca~(2+)受体,传统上被认为是细胞内信号转导(Signal transduction)途径中的主要信号分子。然而近年来国内外的一些研究结果表明CaM不仅存在于细胞内,也存在于细胞外。在植物系统中,Biro和孙大业等人(1984)首次发现燕麦胚芽鞘细胞壁中存在CaM,随后我室一系列工作,包括从小麦细胞壁中纯化CaM、用金标免疫电子显微镜从玉米根尖细胞壁中检测到CaM,以及从悬浮培养的白芷和胡萝卜胞培养介质中检测到CaM,证实了植物细胞外CaM存在的普遍性。另外,我室近年来还发现细胞外CaM可以促进白芷细胞增值、原生质体壁再生及第一次分裂,并且还在白芷和胡萝卜细胞外检测到了CaM结合蛋白(CaMBPs),并将其中主要的分子量为21 ku的CaMBP纯化。上述结果表明植物细胞外不仅存在CaM,而且细胞外CaM还具有生物学功能。  相似文献   

19.
洪广言 《科学通报》1989,34(12):911-911
一、引言 前文在研究五磷酸铈晶体中Ln~(3+)对Ce~(3+)发光强度的影响时,发现当加入少量的Eu~(3+)和Yb~(3+)离子到CeP_5O_(14)晶体中能使Ce~(3+)的发射产生严重的猝灭现象,以致于用Ce~(3+)的302nm吸收带激发晶体时,观察不到Ce~(3+)的发射,或者十分微弱。令人费解的是Yb~(3+)离子在紫外和可见区无吸收带,Yb~(3+)离子的加入应该成为一个稀释离子,现却使Ce~(3+)的发射产生严  相似文献   

20.
席小慧  王攀  王朝阳  于荣 《科学通报》2019,64(1):95-106
以拟南芥WDL3RNA干扰株系(WDL3RNAi)和Tubulin5A-YFP植株等为材料,从叶片的失水率、气孔开度、保卫细胞微管骨架动态排布以及Ca~(2+)流动等不同角度探究在脱落酸(abscisic acid, ABA)诱导的气孔关闭信号通路中,微管结合蛋白WDL3与微管骨架以及Ca~(2+)之间的功能关系,深入了解气孔运动机理.结果表明:(1)相同条件下,WDL3RNAi的叶片蒸腾速率明显慢于野生型.(2)气孔开度实验中,WDL3RNAi对ABA信号比野生型更敏感,气孔关闭更快;微管稳定剂紫杉醇(Paclitaxel)可部分阻碍ABA的作用,微管解聚剂黄草消(Oryzalin)则进一步促进ABA诱导的气孔关闭,但WDL3 RNAi与野生型之间仍存在显著差异;激光共聚焦扫描显微镜观察发现, ABA条件下WDL3 RNAi保卫细胞内微管解聚明显加快,微管成束程度(bundling)显著降低.(3)胞内Ca~(2+)螯合剂BAPTA与ABA共同处理,野生型和WDL3RNAi的气孔关闭均受到不同程度的抑制,关闭减缓,处理前后差异显著.亚细胞结构观察发现, BAPTA阻碍了ABA引起的保卫细胞微管解聚,但WDL3 RNAi与野生型相比,依然维持相对较高的微管解聚比例.此外,非损伤微测技术检测发现,ABA引起的保卫细胞Ca~(2+)内流在WDL3RNAi中较野生型的流速更快,流量加大,显示Ca~(2+)在该信号通路中具有重要作用.综上实验结果表明,微管结合蛋白WDL3通过与微管骨架及Ca~(2+)相互作用参与ABA诱导的气孔关闭过程.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号