首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biales B  Dichter MA  Tischler A 《Nature》1977,267(5607):172-174
Several endocrine cells or their neoplastic derivatives generate action potentials similar to those seen in neurones, and in the adrenal chromaffin cell such regenerative potentials depend primarily on a sodium mechanism. Kidokoro has described action potentials in the GH3 rat pituitary cell line which seem to depend on a calcium mechanism. We have re-investigated the action potential in GH3 cells and found that it results from combined Na and Ca mechanisms in physiological conditions. In addition, we have recorded similar electrical excitability from two human pituitary tumours grown in vitro.  相似文献   

2.
Role for microsomal Ca storage in mammalian neurones?   总被引:4,自引:0,他引:4  
I R Neering  R N McBurney 《Nature》1984,309(5964):158-160
Alterations in the intracellular concentration of calcium ions [( Ca2+]i) are increasingly being found to be associated with regulatory functions in cells of all kinds. In muscle, an elevation of [Ca2+]i is the final link in excitation-contraction coupling while at nerve endings and in secretory cells, similar rises in [Ca2+]i are thought to mediate exocytosis. The discovery of calcium-activated ion channels indicated a role for intracellular calcium in the regulation of membrane excitability. Calcium transients associated with either intracellular release or the inward movement of Ca2+ across the membrane have been recorded in molluscan neurons and more recently in neurones of bullfrog sympathetic ganglia. Here, we report the first recordings of calcium transients in single mammalian neurones. In these experiments we have found that the methylxanthine, caffeine, causes the release of calcium from a labile intracellular store which can be refilled by Ca2+ entering the cell during action potentials.  相似文献   

3.
Electrical activity in non-neuronal cells can be induced by altering the membrane potential and eliciting action potentials. For example, hormones, nutrients and neurotransmitters act on excitable endocrine cells. In an attempt to correlate such electrical activity with regulation of cell activation, we report here direct measurements of cytosolic free Ca2+ changes coincident with action potentials. This was achieved by the powerful and novel combination of two complex techniques, the patch clamp and microfluorimetry using fura 2 methodology. Changes in intracellular calcium concentration were monitored in single cells of the pituitary line GH3B6. We show that a single action potential leads to a marked transient increase in cytosolic free calcium. The size of these short-lived maxima is sufficient to evoke secretory activity. The striking kinetic features of these transients enabled us to identify oscillations in intracellular calcium concentration in unperturbed cells resulting from spontaneous action potentials, and hence provide an explanation for basal secretory activity. Somatostatin, an inhibitor of pituitary function, abolishes the spontaneous spiking of free cytosolic Ca2+ which may explain its inhibitory effect on basal prolactin secretion. Our data therefore demonstrate that electrical activity can stimulate Ca2+-dependent functions in excitable non-neuronal cells.  相似文献   

4.
Cyclic GMP-sensitive conductance of retinal rods consists of aqueous pores   总被引:31,自引:0,他引:31  
A L Zimmerman  D A Baylor 《Nature》1986,321(6065):70-72
The surface membrane of retinal rod and cone outer segments contains a cation-selective conductance which is activated by 3',5'-cyclic guanosine monophosphate (cGMP). Reduction of this conductance by a light-induced decrease in the cytoplasmic concentration of cGMP appears to generate the electrical response to light, but little is known about the molecular nature of the conductance. The estimated unitary conductance is so small that ion transport might occur via either a carrier or a pore mechanism. Here we report recordings of cGMP-activated single-channel currents from excised rod outer segment patches bathed in solutions low in divalent cations. Two elementary conductances, of approximately 24 and 8 pS, were observed. These conductances are too large to be accounted for by carrier transport, indicating that the cGMP-activated conductance consists of aqueous pores. The dependence of the channel activation on the concentration of cGMP suggests that opening of the pore is triggered by cooperative binding of at least three cGMP molecules.  相似文献   

5.
P A Smith  P Rorsman  F M Ashcroft 《Nature》1989,342(6249):550-553
Glucose stimulates insulin secretion from the pancreatic beta-cell by increasing the cytosolic calcium concentration. It is believed that this increment results mainly from Ca2+ influx through dihydropyridine-sensitive calcium channels because insulin secretion is abolished by dihydropyridine antagonists and is potentiated by dihydropyridine agonists. Glucose may influence Ca2+ influx through these channels in two ways: either by regulating the beta-cell membrane potential or by biochemical modulation of the channel itself. The former mechanism is well established. Glucose metabolism, by closing ATP-sensitive K+ channels, depolarizes the beta-cell membrane and initiates Ca2+-dependent electrical activity, with higher glucose concentrations further increasing Ca2+ influx by raising the frequency of action potentials. We show here that glucose metabolism also increases calcium influx directly, by modulating the activity of dihydropyridine-sensitive Ca2+ channels.  相似文献   

6.
Individuals with congenital or acquired prolongation of the QT interval, or long QT syndrome (LQTS), are at risk of life-threatening ventricular arrhythmia. LQTS is commonly genetic in origin but can also be caused or exacerbated by environmental factors. A missense mutation in the L-type calcium channel Ca(V)1.2 leads to LQTS in patients with Timothy syndrome. To explore the effect of the Timothy syndrome mutation on the electrical activity and contraction of human cardiomyocytes, we reprogrammed human skin cells from Timothy syndrome patients to generate induced pluripotent stem cells, and differentiated these cells into cardiomyocytes. Electrophysiological recording and calcium (Ca(2+)) imaging studies of these cells revealed irregular contraction, excess Ca(2+) influx, prolonged action potentials, irregular electrical activity and abnormal calcium transients in ventricular-like cells. We found that roscovitine, a compound that increases the voltage-dependent inactivation of Ca(V)1.2 (refs 6-8), restored the electrical and Ca(2+) signalling properties of cardiomyocytes from Timothy syndrome patients. This study provides new opportunities for studying the molecular and cellular mechanisms of cardiac arrhythmias in humans, and provides a robust assay for developing new drugs to treat these diseases.  相似文献   

7.
H Brew  D Attwell 《Nature》1987,327(6124):707-709
Glutamate is taken up avidly by glial cells in the central nervous system. Glutamate uptake may terminate the transmitter action of glutamate released from neurons, and keep extracellular glutamate at concentrations below those which are neurotoxic. We report here that glutamate evokes a large inward current in retinal glial cells which have their membrane potential and intracellular ion concentrations controlled by the whole-cell patch-clamp technique. This current seems to be due to an electrogenic glutamate uptake carrier, which transports at least two sodium ions with every glutamate anion carried into the cell. Glutamate uptake is strongly voltage-dependent, decreasing at depolarized potentials: when fully activated, it contributes almost half of the conductance in the part of the glial cell membrane facing the retinal neurons. The spatial localization, glutamate affinity and magnitude of the uptake are appropriate for terminating the synaptic action of glutamate released from photoreceptors and bipolar cells. These data challenge present explanations of how the b-wave of the electroretinogram is generated, and suggest a mechanism for non-vesicular voltage-dependent release of glutamate from neurons.  相似文献   

8.
J A Strong  A P Fox  R W Tsien  L K Kaczmarek 《Nature》1987,325(6106):714-717
The modulation of voltage-activated calcium currents by protein kinases provides excitable cells with a mechanism for regulating their electrical behaviour. At the single channel level, modulation of calcium current has, to date, been characterized only in cardiac muscle, where beta-adrenergic agonists, acting through cyclic AMP-dependent protein kinase, enhance the calcium current by increasing channel availability and opening. We now report that enhancement of calcium current in the peptidergic bag cell neurons of Aplysia by protein kinase C occurs through a different mechanism, the recruitment of a previously covert class of calcium channel. Under control conditions, bag cell neurons contain only one class of voltage-activated calcium channel with a conductance of approximately 12 pS. After exposure to agents that activate protein kinase C, these neurons also express a second class of calcium channel with a different unitary conductance (approximately 24 pS) that is never seen in untreated cells.  相似文献   

9.
Larkum ME  Zhu JJ  Sakmann B 《Nature》1999,398(6725):338-341
Pyramidal neurons in layer 5 of the neocortex of the brain extend their axons and dendrites into all layers. They are also unusual in having both an axonal and a dendritic zone for the initiation of action potentials. Distal dendritic inputs, which normally appear greatly attenuated at the axon, must cross a high threshold at the dendritic initiation zone to evoke calcium action potentials but can then generate bursts of axonal action potentials. Here we show that a single back-propagating sodium action potential generated in the axon facilitates the initiation of these calcium action potentials when it coincides with distal dendritic input within a time window of several milliseconds. Inhibitory dendritic input can selectively block the initiation of dendritic calcium action potentials, preventing bursts of axonal action potentials. Thus, excitatory and inhibitory postsynaptic potentials arising in the distal dendrites can exert significantly greater control over action potential initiation in the axon than would be expected from their electrotonically isolated locations. The coincidence of a single back-propagating action potential with a subthreshold distal excitatory postsynaptic potential to evoke a burst of axonal action potentials represents a new mechanism by which the main cortical output neurons can associate inputs arriving at different cortical layers.  相似文献   

10.
Glucose-stimulated insulin secretion is associated with the appearance of electrical activity in the pancreatic beta-cell. At intermediate glucose concentrations, beta-cell electrical activity follows a characteristic pattern of slow oscillations in membrane potential on which bursts of action potentials are superimposed. The electrophysiological background of the bursting pattern remains unestablished. Activation of Ca(2+)-activated large-conductance K+ channels (KCa channel) has been implicated in this process but seems unlikely in view of recent evidence demonstrating that the beta-cell electrical activity is unaffected by the specific KCa channel blocker charybdotoxin. Another hypothesis postulates that the bursting arises as a consequence of two components of Ca(2+)-current inactivation. Here we show that activation of a novel Ca(2+)-dependent K+ current in glucose-stimulated beta-cells produces a transient membrane repolarization. This interrupts action potential firing so that action potentials appear in bursts. Spontaneous activity of this current was seen only rarely but could be induced by addition of compounds functionally related to hormones and neurotransmitters present in the intact pancreatic islet. K+ currents of the same type could be evoked by intracellular application of GTP, the effect of which was mediated by mobilization of Ca2+ from inositol 1,4,5-trisphosphate (InsP3)-sensitive intracellular Ca2+ stores. These observations suggest that oscillatory glucose-stimulated electrical activity, which is correlated with pulsatile release of insulin, results from the interaction between the beta-cell and intraislet hormones and neurotransmitters. Our data also provide evidence for a close interplay between ion channels in the plasma membrane and InsP3-induced mobilization of intracellular Ca2+ in an excitable cell.  相似文献   

11.
R S Zucker  P G Haydon 《Nature》1988,335(6188):360-362
Neurons communicate by secreting a transmitter that excites or inhibits other neurons at synapses. The role of presynaptic membrane potential in triggering transmitter release is still controversial. In one view, presynaptic action potentials trigger the release by the entry of calcium ions into presynaptic terminals through voltage-dependent calcium channels. Calcium acts at high local concentrations at release sites near channel mouths to cause neurosecretion. An opposing view is that, in addition to elevating presynaptic calcium, presynaptic potential stimulates transmitter release by a distinct direct action. The relative importance of depolarization and calcium entry in neurosecretion cannot be determined because the two events are tightly linked. To delineate the roles of presynaptic potential and calcium entry in transmitter release, we have used nitr-5, a photolabile calcium chelator, and a voltage-clamp technique to control intracellular calcium and membrane potential independently at a synapse formed between cell bodies of cultured neurons of the fresh water snail Helisoma trivolvis. We found transmitter release occurred when presynaptic calcium levels were elevated to concentrations of a few micromolar, and that presynaptic voltage had no direct effect on neurosecretion.  相似文献   

12.
L A Blair  V E Dionne 《Nature》1985,315(6017):329-331
A developmental change in the ionic basis of the inward current of action potentials has been observed in many excitable cells. In cultured spinal neurones of Xenopus, the timing of the development of the action parallels that seen in vivo. In vitro, as in vivo, neurones initially produce action potentials of long duration which are principally Ca-dependent; after 1 day of development the impulse is brief and primarily Na-dependent. At both ages, however, both inward components are present and the mechanism underlying shortening of the action potential is unknown. One possibility is that the outward currents change during development. Using the patch-clamp technique, we have recorded single K+-channel currents in membrane patches isolated from the cell bodies of cultured embryonic neurones. The unitary conductance of one class of K+ channels was approximately 155 pS and depolarization increased the probability of a channel being open. Neither conductance nor voltage dependence seemed to change with time in culture; in contrast, the Ca2+-sensitivity of this K+ channel increased. In younger neurones, Ca2+-sensitivity was greatly reduced or absent, whereas in more mature neurones, the activity of this channel was Ca-dependent. Such a change could account for the shortening of the action potential duration by increasing the relative contribution of outward currents.  相似文献   

13.
Presynaptic spike broadening reduces junctional potential amplitude   总被引:3,自引:0,他引:3  
Presynaptic modulation of action potential duration may regulate synaptic transmission in both vertebrates and invertebrates. Such synaptic plasticity is brought about by modifications to membrane currents at presynaptic release sites, which, in turn, lead to changes in the concentration of cytosolic calcium available for mediating transmitter release. The 'primitive' neuromuscular junction of the jellyfish Polyorchis penicillatus is a useful model of presynaptic modulation. In this study, we show that the durations of action potentials in the motor neurons of this jellyfish are negatively correlated with the amplitude of excitatory junctional potentials. We present data from in vitro voltage-clamp experiments showing that short duration voltage spikes, which elicit large excitatory junctional potentials in vivo, produce larger and briefer calcium currents than do long duration action potentials, which elicit small excitatory junctional potentials.  相似文献   

14.
D C Gadsby 《Nature》1983,306(5944):691-693
Hormonal modulation of the ionic conductance of cell membranes is a topic of considerable current interest; it has a major role, for example, in the improved performance of the vertebrate heart elicited by sympathetic nerve stimulation or by circulating catecholamines, an effect involving enhanced calcium influx. beta-Agonist catecholamines also abbreviate the action potential of cardiac Purkinje fibres, and increase the resting potential in a variety of cells, including cardiac cells, a hyperpolarization usually attributed to stimulation of the electrogenic Na+/K+ pump. We show here that nanomolar concentrations of beta-catecholamines cause hyperpolarization of cardiac Purkinje fibres, not by increasing Na+/K+ pump current, but by increasing resting membrane K+ conductance. The hyperpolarization and shortening of the action potential should increase availability of Na+ channels and reduce the refractory period, effects tending to safeguard impulse propagation through the ventricular conducting system despite the increased heart rate caused by beta-catecholamine action on the sinus node pacemaker.  相似文献   

15.
D K O'Dowd 《Nature》1983,303(5918):619-621
  相似文献   

16.
Neurotrophin-evoked rapid excitation through TrkB receptors.   总被引:27,自引:0,他引:27  
K W Kafitz  C R Rose  H Thoenen  A Konnerth 《Nature》1999,401(6756):918-921
Neurotrophins are a family of structurally related proteins that regulate the survival, differentiation and maintenance of function of different populations of peripheral and central neurons. They are also essential for modulating activity-dependent neuronal plasticity. Here we show that neurotrophins elicit action potentials in central neurons. Even at low concentrations, brain-derived neurotrophic factor (BDNF) excited neurons in the hippocampus, cortex and cerebellum. We found that BDNF and neurotrophin-4/5 depolarized neurons just as rapidly as the neurotransmitter glutamate, even at a more than thousand-fold lower concentration. Neurotrophin-3 produced much smaller responses, and nerve growth factor was ineffective. The neurotrophin-induced depolarization resulted from the activation of a sodium ion conductance which was reversibly blocked by K-252a, a protein kinase blocker which prefers tyrosine kinase Trk receptors. Our results demonstrate a very rapid excitatory action of neurotrophins, placing them among the most potent endogenous neuro-excitants in the mammalian central nervous system described so far.  相似文献   

17.
H L Haas  A Konnerth 《Nature》1983,302(5907):432-434
Ample evidence exists for histaminergic and noradrenergic projections to the hippocampus. Both amines exert neurotransmitter or modulator actions on principal neurones in the CA 1 and in the dentate area. A number of mechanisms have been proposed for these actions, including increased potassium conductance, increased chloride conductance and electrogenic pump stimulation, and reduction of the anomalous inward rectification. Action potentials, and particularly bursts of spikes, in CA 1 pyramidal cells, are followed by an afterhyperpolarization (AHP) which consists of two components. The late AHP depends on a calcium-activated potassium conductance gK+ (Ca2+), and has recently been shown to be increased by dopamine. We report here a rapid and reversible decrease of the late AHP component following a burst of sodium spikes or a calcium spike, during perfusion with micromolar concentrations of histamine and noradrenaline. This effect is mediated by H2 receptors and beta-receptors, respectively, and occurred in the absence of changes in the calcium spike. By such a mechanism histamine and noradrenaline can profoundly potentiate the excitatory impact of depolarizing signals.  相似文献   

18.
R E Kalil  M W Dubin  G Scott  L A Stark 《Nature》1986,323(6084):156-158
Although the influence of electrical activity on neural development has been studied extensively, experiments have only recently focused on the role of activity in the development of the mammalian central nervous system (CNS). Using tetrodotoxin (TTX) to abolish sodium-mediated action potentials, studies on the visual system show that impulse activity is essential both for the normal development of neuronal size and responsivity in the lateral geniculate nucleus (LGN), and for the eye-specific segregation of geniculo-cortical axons. There have been no anatomical studies to investigate the influence of action potentials on CNS synaptic development. We report here the first direct evidence that elimination of action potentials in the mammalian CNS blocks the growth of developing axon terminals and the formation of normal adult synaptic patterns. Our results show that when TTX is used to eliminate retinal ganglion-cell action potentials in the cat from birth to 8 weeks, the connections made by ganglion cell axons with LGN neurones, retinogeniculate synapses, remain almost identical morphologically to those in the newborn kitten.  相似文献   

19.
Kang TM  Hilgemann DW 《Nature》2004,427(6974):544-548
The cardiac Na+/Ca2+ exchanger (NCX1; ref. 2) is a bi-directional Ca2+ transporter that contributes to the electrical activity of the heart. When, and if, Ca2+ is exported or imported depends on the Na+/Ca2+ exchange ratio. Whereas a ratio of 3:1 (Na+:Ca2+) has been indicated by Ca2+ flux equilibrium studies, a ratio closer to 4:1 has been indicated by exchange current reversal potentials. Here we show, using an ion-selective electrode technique to quantify ion fluxes in giant patches, that ion flux ratios are approximately 3.2 for maximal transport in either direction. With Na+ and Ca2+ on both sides of the membrane, net current and Ca2+ flux can reverse at different membrane potentials, and inward current can be generated in the absence of cytoplasmic Ca2+, but not Na+. We propose that NCX1 can transport not only 1 Ca2+ or 3 Na+ ions, but also 1 Ca2+ with 1 Na+ ion at a low rate. Therefore, in addition to the major 3:1 transport mode, import of 1 Na+ with 1 Ca2+ defines a Na+-conducting mode that exports 1 Ca2+, and an electroneutral Ca2+ influx mode that exports 3 Na+. The two minor transport modes can potentially determine resting free Ca2+ and background inward current in heart.  相似文献   

20.
摘要:目的 利用电刺激结合转盘共聚焦显微镜检测胞内钙离子浓度变化。 方法 钙离子变化是神经元发挥功能的关键因素。 本实验利用荧光探针 fluo-4AM 标记钙离子,电刺激兴奋神经元,转盘共聚焦技术检测胞内荧光强度的快速变化。 结果 成功制备了刺激电极,并结合转盘共聚焦系统检测到刺激前 10%左右的原代神经元有自发的钙离子升高,电刺激后,胞内钙离子迅速上升,刺激结束后,仍有周期性的升高,但幅度降低。 结论 电刺激结合转盘共聚焦检测到胞内刺激前后钙离子的快速变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号